Metamath Proof Explorer
Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014) Avoid ax-8 , df-clel . (Revised by GG, 6-Sep-2024)
|
|
Ref |
Expression |
|
Hypothesis |
eq0rdv.1 |
⊢ ( 𝜑 → ¬ 𝑥 ∈ 𝐴 ) |
|
Assertion |
eq0rdv |
⊢ ( 𝜑 → 𝐴 = ∅ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eq0rdv.1 |
⊢ ( 𝜑 → ¬ 𝑥 ∈ 𝐴 ) |
| 2 |
1
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
| 3 |
|
eq0 |
⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
| 4 |
2 3
|
sylibr |
⊢ ( 𝜑 → 𝐴 = ∅ ) |