Metamath Proof Explorer


Theorem bj-pr22val

Description: Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-pr22val pr2𝐴 , 𝐵 ⦆ = 𝐵

Proof

Step Hyp Ref Expression
1 df-bj-2upl 𝐴 , 𝐵 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) )
2 bj-pr2eq ( ⦅ 𝐴 , 𝐵 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) → pr2𝐴 , 𝐵 ⦆ = pr2 ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) )
3 1 2 ax-mp pr2𝐴 , 𝐵 ⦆ = pr2 ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) )
4 bj-pr2un pr2 ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) = ( pr2𝐴 ⦆ ∪ pr2 ( { 1o } × tag 𝐵 ) )
5 3 4 eqtri pr2𝐴 , 𝐵 ⦆ = ( pr2𝐴 ⦆ ∪ pr2 ( { 1o } × tag 𝐵 ) )
6 df-bj-1upl 𝐴 ⦆ = ( { ∅ } × tag 𝐴 )
7 bj-pr2eq ( ⦅ 𝐴 ⦆ = ( { ∅ } × tag 𝐴 ) → pr2𝐴 ⦆ = pr2 ( { ∅ } × tag 𝐴 ) )
8 6 7 ax-mp pr2𝐴 ⦆ = pr2 ( { ∅ } × tag 𝐴 )
9 bj-pr2val pr2 ( { ∅ } × tag 𝐴 ) = if ( ∅ = 1o , 𝐴 , ∅ )
10 1n0 1o ≠ ∅
11 10 nesymi ¬ ∅ = 1o
12 11 iffalsei if ( ∅ = 1o , 𝐴 , ∅ ) = ∅
13 8 9 12 3eqtri pr2𝐴 ⦆ = ∅
14 bj-pr2val pr2 ( { 1o } × tag 𝐵 ) = if ( 1o = 1o , 𝐵 , ∅ )
15 eqid 1o = 1o
16 15 iftruei if ( 1o = 1o , 𝐵 , ∅ ) = 𝐵
17 14 16 eqtri pr2 ( { 1o } × tag 𝐵 ) = 𝐵
18 13 17 uneq12i ( pr2𝐴 ⦆ ∪ pr2 ( { 1o } × tag 𝐵 ) ) = ( ∅ ∪ 𝐵 )
19 0un ( ∅ ∪ 𝐵 ) = 𝐵
20 5 18 19 3eqtri pr2𝐴 , 𝐵 ⦆ = 𝐵