| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-bj-2upl | ⊢ ⦅ 𝐴 ,  𝐵 ⦆  =  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐵 ) ) | 
						
							| 2 |  | bj-pr2eq | ⊢ ( ⦅ 𝐴 ,  𝐵 ⦆  =  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐵 ) )  →  pr2  ⦅ 𝐴 ,  𝐵 ⦆  =  pr2  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐵 ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ pr2  ⦅ 𝐴 ,  𝐵 ⦆  =  pr2  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐵 ) ) | 
						
							| 4 |  | bj-pr2un | ⊢ pr2  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐵 ) )  =  ( pr2  ⦅ 𝐴 ⦆  ∪  pr2  ( { 1o }  ×  tag  𝐵 ) ) | 
						
							| 5 | 3 4 | eqtri | ⊢ pr2  ⦅ 𝐴 ,  𝐵 ⦆  =  ( pr2  ⦅ 𝐴 ⦆  ∪  pr2  ( { 1o }  ×  tag  𝐵 ) ) | 
						
							| 6 |  | df-bj-1upl | ⊢ ⦅ 𝐴 ⦆  =  ( { ∅ }  ×  tag  𝐴 ) | 
						
							| 7 |  | bj-pr2eq | ⊢ ( ⦅ 𝐴 ⦆  =  ( { ∅ }  ×  tag  𝐴 )  →  pr2  ⦅ 𝐴 ⦆  =  pr2  ( { ∅ }  ×  tag  𝐴 ) ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ pr2  ⦅ 𝐴 ⦆  =  pr2  ( { ∅ }  ×  tag  𝐴 ) | 
						
							| 9 |  | bj-pr2val | ⊢ pr2  ( { ∅ }  ×  tag  𝐴 )  =  if ( ∅  =  1o ,  𝐴 ,  ∅ ) | 
						
							| 10 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 11 | 10 | nesymi | ⊢ ¬  ∅  =  1o | 
						
							| 12 | 11 | iffalsei | ⊢ if ( ∅  =  1o ,  𝐴 ,  ∅ )  =  ∅ | 
						
							| 13 | 8 9 12 | 3eqtri | ⊢ pr2  ⦅ 𝐴 ⦆  =  ∅ | 
						
							| 14 |  | bj-pr2val | ⊢ pr2  ( { 1o }  ×  tag  𝐵 )  =  if ( 1o  =  1o ,  𝐵 ,  ∅ ) | 
						
							| 15 |  | eqid | ⊢ 1o  =  1o | 
						
							| 16 | 15 | iftruei | ⊢ if ( 1o  =  1o ,  𝐵 ,  ∅ )  =  𝐵 | 
						
							| 17 | 14 16 | eqtri | ⊢ pr2  ( { 1o }  ×  tag  𝐵 )  =  𝐵 | 
						
							| 18 | 13 17 | uneq12i | ⊢ ( pr2  ⦅ 𝐴 ⦆  ∪  pr2  ( { 1o }  ×  tag  𝐵 ) )  =  ( ∅  ∪  𝐵 ) | 
						
							| 19 |  | 0un | ⊢ ( ∅  ∪  𝐵 )  =  𝐵 | 
						
							| 20 | 5 18 19 | 3eqtri | ⊢ pr2  ⦅ 𝐴 ,  𝐵 ⦆  =  𝐵 |