Step |
Hyp |
Ref |
Expression |
1 |
|
df-bj-2upl |
⊢ ⦅ 𝐴 , 𝐵 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) |
2 |
|
bj-pr2eq |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) → pr2 ⦅ 𝐴 , 𝐵 ⦆ = pr2 ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ pr2 ⦅ 𝐴 , 𝐵 ⦆ = pr2 ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) |
4 |
|
bj-pr2un |
⊢ pr2 ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) = ( pr2 ⦅ 𝐴 ⦆ ∪ pr2 ( { 1o } × tag 𝐵 ) ) |
5 |
3 4
|
eqtri |
⊢ pr2 ⦅ 𝐴 , 𝐵 ⦆ = ( pr2 ⦅ 𝐴 ⦆ ∪ pr2 ( { 1o } × tag 𝐵 ) ) |
6 |
|
df-bj-1upl |
⊢ ⦅ 𝐴 ⦆ = ( { ∅ } × tag 𝐴 ) |
7 |
|
bj-pr2eq |
⊢ ( ⦅ 𝐴 ⦆ = ( { ∅ } × tag 𝐴 ) → pr2 ⦅ 𝐴 ⦆ = pr2 ( { ∅ } × tag 𝐴 ) ) |
8 |
6 7
|
ax-mp |
⊢ pr2 ⦅ 𝐴 ⦆ = pr2 ( { ∅ } × tag 𝐴 ) |
9 |
|
bj-pr2val |
⊢ pr2 ( { ∅ } × tag 𝐴 ) = if ( ∅ = 1o , 𝐴 , ∅ ) |
10 |
|
1n0 |
⊢ 1o ≠ ∅ |
11 |
10
|
nesymi |
⊢ ¬ ∅ = 1o |
12 |
11
|
iffalsei |
⊢ if ( ∅ = 1o , 𝐴 , ∅ ) = ∅ |
13 |
8 9 12
|
3eqtri |
⊢ pr2 ⦅ 𝐴 ⦆ = ∅ |
14 |
|
bj-pr2val |
⊢ pr2 ( { 1o } × tag 𝐵 ) = if ( 1o = 1o , 𝐵 , ∅ ) |
15 |
|
eqid |
⊢ 1o = 1o |
16 |
15
|
iftruei |
⊢ if ( 1o = 1o , 𝐵 , ∅ ) = 𝐵 |
17 |
14 16
|
eqtri |
⊢ pr2 ( { 1o } × tag 𝐵 ) = 𝐵 |
18 |
13 17
|
uneq12i |
⊢ ( pr2 ⦅ 𝐴 ⦆ ∪ pr2 ( { 1o } × tag 𝐵 ) ) = ( ∅ ∪ 𝐵 ) |
19 |
|
0un |
⊢ ( ∅ ∪ 𝐵 ) = 𝐵 |
20 |
5 18 19
|
3eqtri |
⊢ pr2 ⦅ 𝐴 , 𝐵 ⦆ = 𝐵 |