Metamath Proof Explorer


Theorem bj-pr2ex

Description: Sethood of the second projection. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-pr2ex ( 𝐴𝑉 → pr2 𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 df-bj-pr2 pr2 𝐴 = ( 1o Proj 𝐴 )
2 bj-projex ( 𝐴𝑉 → ( 1o Proj 𝐴 ) ∈ V )
3 1 2 eqeltrid ( 𝐴𝑉 → pr2 𝐴 ∈ V )