Step |
Hyp |
Ref |
Expression |
1 |
|
bj-pr1eq |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ → pr1 ⦅ 𝐴 , 𝐵 ⦆ = pr1 ⦅ 𝐶 , 𝐷 ⦆ ) |
2 |
|
bj-pr21val |
⊢ pr1 ⦅ 𝐴 , 𝐵 ⦆ = 𝐴 |
3 |
|
bj-pr21val |
⊢ pr1 ⦅ 𝐶 , 𝐷 ⦆ = 𝐶 |
4 |
1 2 3
|
3eqtr3g |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ → 𝐴 = 𝐶 ) |
5 |
|
bj-pr2eq |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ → pr2 ⦅ 𝐴 , 𝐵 ⦆ = pr2 ⦅ 𝐶 , 𝐷 ⦆ ) |
6 |
|
bj-pr22val |
⊢ pr2 ⦅ 𝐴 , 𝐵 ⦆ = 𝐵 |
7 |
|
bj-pr22val |
⊢ pr2 ⦅ 𝐶 , 𝐷 ⦆ = 𝐷 |
8 |
5 6 7
|
3eqtr3g |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ → 𝐵 = 𝐷 ) |
9 |
4 8
|
jca |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
10 |
|
bj-2upleq |
⊢ ( 𝐴 = 𝐶 → ( 𝐵 = 𝐷 → ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ ) ) |
11 |
10
|
imp |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ ) |
12 |
9 11
|
impbii |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |