| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-pr1eq | ⊢ ( ⦅ 𝐴 ,  𝐵 ⦆  =  ⦅ 𝐶 ,  𝐷 ⦆  →  pr1  ⦅ 𝐴 ,  𝐵 ⦆  =  pr1  ⦅ 𝐶 ,  𝐷 ⦆ ) | 
						
							| 2 |  | bj-pr21val | ⊢ pr1  ⦅ 𝐴 ,  𝐵 ⦆  =  𝐴 | 
						
							| 3 |  | bj-pr21val | ⊢ pr1  ⦅ 𝐶 ,  𝐷 ⦆  =  𝐶 | 
						
							| 4 | 1 2 3 | 3eqtr3g | ⊢ ( ⦅ 𝐴 ,  𝐵 ⦆  =  ⦅ 𝐶 ,  𝐷 ⦆  →  𝐴  =  𝐶 ) | 
						
							| 5 |  | bj-pr2eq | ⊢ ( ⦅ 𝐴 ,  𝐵 ⦆  =  ⦅ 𝐶 ,  𝐷 ⦆  →  pr2  ⦅ 𝐴 ,  𝐵 ⦆  =  pr2  ⦅ 𝐶 ,  𝐷 ⦆ ) | 
						
							| 6 |  | bj-pr22val | ⊢ pr2  ⦅ 𝐴 ,  𝐵 ⦆  =  𝐵 | 
						
							| 7 |  | bj-pr22val | ⊢ pr2  ⦅ 𝐶 ,  𝐷 ⦆  =  𝐷 | 
						
							| 8 | 5 6 7 | 3eqtr3g | ⊢ ( ⦅ 𝐴 ,  𝐵 ⦆  =  ⦅ 𝐶 ,  𝐷 ⦆  →  𝐵  =  𝐷 ) | 
						
							| 9 | 4 8 | jca | ⊢ ( ⦅ 𝐴 ,  𝐵 ⦆  =  ⦅ 𝐶 ,  𝐷 ⦆  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) | 
						
							| 10 |  | bj-2upleq | ⊢ ( 𝐴  =  𝐶  →  ( 𝐵  =  𝐷  →  ⦅ 𝐴 ,  𝐵 ⦆  =  ⦅ 𝐶 ,  𝐷 ⦆ ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  →  ⦅ 𝐴 ,  𝐵 ⦆  =  ⦅ 𝐶 ,  𝐷 ⦆ ) | 
						
							| 12 | 9 11 | impbii | ⊢ ( ⦅ 𝐴 ,  𝐵 ⦆  =  ⦅ 𝐶 ,  𝐷 ⦆  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) |