| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-pr1eq |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ → pr1 ⦅ 𝐴 , 𝐵 ⦆ = pr1 ⦅ 𝐶 , 𝐷 ⦆ ) |
| 2 |
|
bj-pr21val |
⊢ pr1 ⦅ 𝐴 , 𝐵 ⦆ = 𝐴 |
| 3 |
|
bj-pr21val |
⊢ pr1 ⦅ 𝐶 , 𝐷 ⦆ = 𝐶 |
| 4 |
1 2 3
|
3eqtr3g |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ → 𝐴 = 𝐶 ) |
| 5 |
|
bj-pr2eq |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ → pr2 ⦅ 𝐴 , 𝐵 ⦆ = pr2 ⦅ 𝐶 , 𝐷 ⦆ ) |
| 6 |
|
bj-pr22val |
⊢ pr2 ⦅ 𝐴 , 𝐵 ⦆ = 𝐵 |
| 7 |
|
bj-pr22val |
⊢ pr2 ⦅ 𝐶 , 𝐷 ⦆ = 𝐷 |
| 8 |
5 6 7
|
3eqtr3g |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ → 𝐵 = 𝐷 ) |
| 9 |
4 8
|
jca |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 10 |
|
bj-2upleq |
⊢ ( 𝐴 = 𝐶 → ( 𝐵 = 𝐷 → ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ ) ) |
| 11 |
10
|
imp |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ ) |
| 12 |
9 11
|
impbii |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ = ⦅ 𝐶 , 𝐷 ⦆ ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |