Metamath Proof Explorer


Theorem bj-pr21val

Description: Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-pr21val pr1𝐴 , 𝐵 ⦆ = 𝐴

Proof

Step Hyp Ref Expression
1 df-bj-2upl 𝐴 , 𝐵 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) )
2 bj-pr1eq ( ⦅ 𝐴 , 𝐵 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) → pr1𝐴 , 𝐵 ⦆ = pr1 ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) )
3 1 2 ax-mp pr1𝐴 , 𝐵 ⦆ = pr1 ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) )
4 bj-pr1un pr1 ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) = ( pr1𝐴 ⦆ ∪ pr1 ( { 1o } × tag 𝐵 ) )
5 bj-pr11val pr1𝐴 ⦆ = 𝐴
6 bj-pr1val pr1 ( { 1o } × tag 𝐵 ) = if ( 1o = ∅ , 𝐵 , ∅ )
7 1n0 1o ≠ ∅
8 7 neii ¬ 1o = ∅
9 8 iffalsei if ( 1o = ∅ , 𝐵 , ∅ ) = ∅
10 6 9 eqtri pr1 ( { 1o } × tag 𝐵 ) = ∅
11 5 10 uneq12i ( pr1𝐴 ⦆ ∪ pr1 ( { 1o } × tag 𝐵 ) ) = ( 𝐴 ∪ ∅ )
12 un0 ( 𝐴 ∪ ∅ ) = 𝐴
13 11 12 eqtri ( pr1𝐴 ⦆ ∪ pr1 ( { 1o } × tag 𝐵 ) ) = 𝐴
14 3 4 13 3eqtri pr1𝐴 , 𝐵 ⦆ = 𝐴