| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-bj-2upl | ⊢ ⦅ 𝐴 ,  𝐵 ⦆  =  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐵 ) ) | 
						
							| 2 |  | bj-pr1eq | ⊢ ( ⦅ 𝐴 ,  𝐵 ⦆  =  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐵 ) )  →  pr1  ⦅ 𝐴 ,  𝐵 ⦆  =  pr1  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐵 ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ pr1  ⦅ 𝐴 ,  𝐵 ⦆  =  pr1  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐵 ) ) | 
						
							| 4 |  | bj-pr1un | ⊢ pr1  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐵 ) )  =  ( pr1  ⦅ 𝐴 ⦆  ∪  pr1  ( { 1o }  ×  tag  𝐵 ) ) | 
						
							| 5 |  | bj-pr11val | ⊢ pr1  ⦅ 𝐴 ⦆  =  𝐴 | 
						
							| 6 |  | bj-pr1val | ⊢ pr1  ( { 1o }  ×  tag  𝐵 )  =  if ( 1o  =  ∅ ,  𝐵 ,  ∅ ) | 
						
							| 7 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 8 | 7 | neii | ⊢ ¬  1o  =  ∅ | 
						
							| 9 | 8 | iffalsei | ⊢ if ( 1o  =  ∅ ,  𝐵 ,  ∅ )  =  ∅ | 
						
							| 10 | 6 9 | eqtri | ⊢ pr1  ( { 1o }  ×  tag  𝐵 )  =  ∅ | 
						
							| 11 | 5 10 | uneq12i | ⊢ ( pr1  ⦅ 𝐴 ⦆  ∪  pr1  ( { 1o }  ×  tag  𝐵 ) )  =  ( 𝐴  ∪  ∅ ) | 
						
							| 12 |  | un0 | ⊢ ( 𝐴  ∪  ∅ )  =  𝐴 | 
						
							| 13 | 11 12 | eqtri | ⊢ ( pr1  ⦅ 𝐴 ⦆  ∪  pr1  ( { 1o }  ×  tag  𝐵 ) )  =  𝐴 | 
						
							| 14 | 3 4 13 | 3eqtri | ⊢ pr1  ⦅ 𝐴 ,  𝐵 ⦆  =  𝐴 |