Step |
Hyp |
Ref |
Expression |
1 |
|
df-bj-2upl |
⊢ ⦅ 𝐴 , 𝐵 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) |
2 |
|
bj-pr1eq |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) → pr1 ⦅ 𝐴 , 𝐵 ⦆ = pr1 ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ pr1 ⦅ 𝐴 , 𝐵 ⦆ = pr1 ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) |
4 |
|
bj-pr1un |
⊢ pr1 ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) = ( pr1 ⦅ 𝐴 ⦆ ∪ pr1 ( { 1o } × tag 𝐵 ) ) |
5 |
|
bj-pr11val |
⊢ pr1 ⦅ 𝐴 ⦆ = 𝐴 |
6 |
|
bj-pr1val |
⊢ pr1 ( { 1o } × tag 𝐵 ) = if ( 1o = ∅ , 𝐵 , ∅ ) |
7 |
|
1n0 |
⊢ 1o ≠ ∅ |
8 |
7
|
neii |
⊢ ¬ 1o = ∅ |
9 |
8
|
iffalsei |
⊢ if ( 1o = ∅ , 𝐵 , ∅ ) = ∅ |
10 |
6 9
|
eqtri |
⊢ pr1 ( { 1o } × tag 𝐵 ) = ∅ |
11 |
5 10
|
uneq12i |
⊢ ( pr1 ⦅ 𝐴 ⦆ ∪ pr1 ( { 1o } × tag 𝐵 ) ) = ( 𝐴 ∪ ∅ ) |
12 |
|
un0 |
⊢ ( 𝐴 ∪ ∅ ) = 𝐴 |
13 |
11 12
|
eqtri |
⊢ ( pr1 ⦅ 𝐴 ⦆ ∪ pr1 ( { 1o } × tag 𝐵 ) ) = 𝐴 |
14 |
3 4 13
|
3eqtri |
⊢ pr1 ⦅ 𝐴 , 𝐵 ⦆ = 𝐴 |