Metamath Proof Explorer


Theorem bj-pr1val

Description: Value of the first projection. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-pr1val pr1 ( { 𝐴 } × tag 𝐵 ) = if ( 𝐴 = ∅ , 𝐵 , ∅ )

Proof

Step Hyp Ref Expression
1 df-bj-pr1 pr1 ( { 𝐴 } × tag 𝐵 ) = ( ∅ Proj ( { 𝐴 } × tag 𝐵 ) )
2 0ex ∅ ∈ V
3 bj-projval ( ∅ ∈ V → ( ∅ Proj ( { 𝐴 } × tag 𝐵 ) ) = if ( 𝐴 = ∅ , 𝐵 , ∅ ) )
4 2 3 ax-mp ( ∅ Proj ( { 𝐴 } × tag 𝐵 ) ) = if ( 𝐴 = ∅ , 𝐵 , ∅ )
5 1 4 eqtri pr1 ( { 𝐴 } × tag 𝐵 ) = if ( 𝐴 = ∅ , 𝐵 , ∅ )