Metamath Proof Explorer


Theorem bj-pr1val

Description: Value of the first projection. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-pr1val
|- pr1 ( { A } X. tag B ) = if ( A = (/) , B , (/) )

Proof

Step Hyp Ref Expression
1 df-bj-pr1
 |-  pr1 ( { A } X. tag B ) = ( (/) Proj ( { A } X. tag B ) )
2 0ex
 |-  (/) e. _V
3 bj-projval
 |-  ( (/) e. _V -> ( (/) Proj ( { A } X. tag B ) ) = if ( A = (/) , B , (/) ) )
4 2 3 ax-mp
 |-  ( (/) Proj ( { A } X. tag B ) ) = if ( A = (/) , B , (/) )
5 1 4 eqtri
 |-  pr1 ( { A } X. tag B ) = if ( A = (/) , B , (/) )