Metamath Proof Explorer


Theorem bj-pr11val

Description: Value of the first projection of a monuple. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-pr11val
|- pr1 (| A |) = A

Proof

Step Hyp Ref Expression
1 df-bj-1upl
 |-  (| A |) = ( { (/) } X. tag A )
2 bj-pr1eq
 |-  ( (| A |) = ( { (/) } X. tag A ) -> pr1 (| A |) = pr1 ( { (/) } X. tag A ) )
3 1 2 ax-mp
 |-  pr1 (| A |) = pr1 ( { (/) } X. tag A )
4 bj-pr1val
 |-  pr1 ( { (/) } X. tag A ) = if ( (/) = (/) , A , (/) )
5 eqid
 |-  (/) = (/)
6 5 iftruei
 |-  if ( (/) = (/) , A , (/) ) = A
7 3 4 6 3eqtri
 |-  pr1 (| A |) = A