Metamath Proof Explorer


Theorem bj-pr1eq

Description: Substitution property for pr1 . (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-pr1eq
|- ( A = B -> pr1 A = pr1 B )

Proof

Step Hyp Ref Expression
1 bj-projeq2
 |-  ( A = B -> ( (/) Proj A ) = ( (/) Proj B ) )
2 df-bj-pr1
 |-  pr1 A = ( (/) Proj A )
3 df-bj-pr1
 |-  pr1 B = ( (/) Proj B )
4 1 2 3 3eqtr4g
 |-  ( A = B -> pr1 A = pr1 B )