Metamath Proof Explorer


Theorem bj-pr1eq

Description: Substitution property for pr1 . (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-pr1eq ( 𝐴 = 𝐵 → pr1 𝐴 = pr1 𝐵 )

Proof

Step Hyp Ref Expression
1 bj-projeq2 ( 𝐴 = 𝐵 → ( ∅ Proj 𝐴 ) = ( ∅ Proj 𝐵 ) )
2 df-bj-pr1 pr1 𝐴 = ( ∅ Proj 𝐴 )
3 df-bj-pr1 pr1 𝐵 = ( ∅ Proj 𝐵 )
4 1 2 3 3eqtr4g ( 𝐴 = 𝐵 → pr1 𝐴 = pr1 𝐵 )