Metamath Proof Explorer


Theorem bj-pr1eq

Description: Substitution property for pr1 . (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-pr1eq A = B pr1 A = pr1 B

Proof

Step Hyp Ref Expression
1 bj-projeq2 A = B Proj A = Proj B
2 df-bj-pr1 pr1 A = Proj A
3 df-bj-pr1 pr1 B = Proj B
4 1 2 3 3eqtr4g A = B pr1 A = pr1 B