Metamath Proof Explorer


Theorem bj-pr1un

Description: The first projection preserves unions. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-pr1un pr1 A B = pr1 A pr1 B

Proof

Step Hyp Ref Expression
1 bj-projun Proj A B = Proj A Proj B
2 df-bj-pr1 pr1 A B = Proj A B
3 df-bj-pr1 pr1 A = Proj A
4 df-bj-pr1 pr1 B = Proj B
5 3 4 uneq12i pr1 A pr1 B = Proj A Proj B
6 1 2 5 3eqtr4i pr1 A B = pr1 A pr1 B