Metamath Proof Explorer


Theorem bj-pr1un

Description: The first projection preserves unions. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-pr1un pr1AB=pr1Apr1B

Proof

Step Hyp Ref Expression
1 bj-projun ProjAB=ProjAProjB
2 df-bj-pr1 pr1AB=ProjAB
3 df-bj-pr1 pr1A=ProjA
4 df-bj-pr1 pr1B=ProjB
5 3 4 uneq12i pr1Apr1B=ProjAProjB
6 1 2 5 3eqtr4i pr1AB=pr1Apr1B