Metamath Proof Explorer


Theorem bj-projun

Description: The class projection on a given component preserves unions. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-projun AProjBC=AProjBAProjC

Proof

Step Hyp Ref Expression
1 df-bj-proj AProjB=x|xBA
2 1 eqabri xAProjBxBA
3 df-bj-proj AProjC=x|xCA
4 3 eqabri xAProjCxCA
5 2 4 orbi12i xAProjBxAProjCxBAxCA
6 elun xAProjBAProjCxAProjBxAProjC
7 df-bj-proj AProjBC=x|xBCA
8 7 eqabri xAProjBCxBCA
9 imaundir BCA=BACA
10 9 eleq2i xBCAxBACA
11 elun xBACAxBAxCA
12 8 10 11 3bitri xAProjBCxBAxCA
13 5 6 12 3bitr4ri xAProjBCxAProjBAProjC
14 13 eqriv AProjBC=AProjBAProjC