Metamath Proof Explorer


Theorem bj-pr1un

Description: The first projection preserves unions. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-pr1un
|- pr1 ( A u. B ) = ( pr1 A u. pr1 B )

Proof

Step Hyp Ref Expression
1 bj-projun
 |-  ( (/) Proj ( A u. B ) ) = ( ( (/) Proj A ) u. ( (/) Proj B ) )
2 df-bj-pr1
 |-  pr1 ( A u. B ) = ( (/) Proj ( A u. B ) )
3 df-bj-pr1
 |-  pr1 A = ( (/) Proj A )
4 df-bj-pr1
 |-  pr1 B = ( (/) Proj B )
5 3 4 uneq12i
 |-  ( pr1 A u. pr1 B ) = ( ( (/) Proj A ) u. ( (/) Proj B ) )
6 1 2 5 3eqtr4i
 |-  pr1 ( A u. B ) = ( pr1 A u. pr1 B )