Metamath Proof Explorer


Theorem bj-projeq2

Description: Substitution property for Proj . (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-projeq2 ( 𝐵 = 𝐶 → ( 𝐴 Proj 𝐵 ) = ( 𝐴 Proj 𝐶 ) )

Proof

Step Hyp Ref Expression
1 eqid 𝐴 = 𝐴
2 bj-projeq ( 𝐴 = 𝐴 → ( 𝐵 = 𝐶 → ( 𝐴 Proj 𝐵 ) = ( 𝐴 Proj 𝐶 ) ) )
3 1 2 ax-mp ( 𝐵 = 𝐶 → ( 𝐴 Proj 𝐵 ) = ( 𝐴 Proj 𝐶 ) )