Metamath Proof Explorer


Theorem bj-projeq

Description: Substitution property for Proj . (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-projeq ( 𝐴 = 𝐶 → ( 𝐵 = 𝐷 → ( 𝐴 Proj 𝐵 ) = ( 𝐶 Proj 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) → 𝐵 = 𝐷 )
2 simpl ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) → 𝐴 = 𝐶 )
3 2 sneqd ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) → { 𝐴 } = { 𝐶 } )
4 1 3 imaeq12d ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) → ( 𝐵 “ { 𝐴 } ) = ( 𝐷 “ { 𝐶 } ) )
5 4 eleq2d ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) → ( { 𝑥 } ∈ ( 𝐵 “ { 𝐴 } ) ↔ { 𝑥 } ∈ ( 𝐷 “ { 𝐶 } ) ) )
6 5 abbidv ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) → { 𝑥 ∣ { 𝑥 } ∈ ( 𝐵 “ { 𝐴 } ) } = { 𝑥 ∣ { 𝑥 } ∈ ( 𝐷 “ { 𝐶 } ) } )
7 df-bj-proj ( 𝐴 Proj 𝐵 ) = { 𝑥 ∣ { 𝑥 } ∈ ( 𝐵 “ { 𝐴 } ) }
8 df-bj-proj ( 𝐶 Proj 𝐷 ) = { 𝑥 ∣ { 𝑥 } ∈ ( 𝐷 “ { 𝐶 } ) }
9 6 7 8 3eqtr4g ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) → ( 𝐴 Proj 𝐵 ) = ( 𝐶 Proj 𝐷 ) )
10 9 ex ( 𝐴 = 𝐶 → ( 𝐵 = 𝐷 → ( 𝐴 Proj 𝐵 ) = ( 𝐶 Proj 𝐷 ) ) )