Metamath Proof Explorer


Theorem bj-projeq

Description: Substitution property for Proj . (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-projeq
|- ( A = C -> ( B = D -> ( A Proj B ) = ( C Proj D ) ) )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( A = C /\ B = D ) -> B = D )
2 simpl
 |-  ( ( A = C /\ B = D ) -> A = C )
3 2 sneqd
 |-  ( ( A = C /\ B = D ) -> { A } = { C } )
4 1 3 imaeq12d
 |-  ( ( A = C /\ B = D ) -> ( B " { A } ) = ( D " { C } ) )
5 4 eleq2d
 |-  ( ( A = C /\ B = D ) -> ( { x } e. ( B " { A } ) <-> { x } e. ( D " { C } ) ) )
6 5 abbidv
 |-  ( ( A = C /\ B = D ) -> { x | { x } e. ( B " { A } ) } = { x | { x } e. ( D " { C } ) } )
7 df-bj-proj
 |-  ( A Proj B ) = { x | { x } e. ( B " { A } ) }
8 df-bj-proj
 |-  ( C Proj D ) = { x | { x } e. ( D " { C } ) }
9 6 7 8 3eqtr4g
 |-  ( ( A = C /\ B = D ) -> ( A Proj B ) = ( C Proj D ) )
10 9 ex
 |-  ( A = C -> ( B = D -> ( A Proj B ) = ( C Proj D ) ) )