Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Tuples of classes
bj-projeq
Next ⟩
bj-projeq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-projeq
Description:
Substitution property for
Proj
.
(Contributed by
BJ
, 6-Apr-2019)
Ref
Expression
Assertion
bj-projeq
⊢
A
=
C
→
B
=
D
→
A
Proj
B
=
C
Proj
D
Proof
Step
Hyp
Ref
Expression
1
simpr
⊢
A
=
C
∧
B
=
D
→
B
=
D
2
simpl
⊢
A
=
C
∧
B
=
D
→
A
=
C
3
2
sneqd
⊢
A
=
C
∧
B
=
D
→
A
=
C
4
1
3
imaeq12d
⊢
A
=
C
∧
B
=
D
→
B
A
=
D
C
5
4
eleq2d
⊢
A
=
C
∧
B
=
D
→
x
∈
B
A
↔
x
∈
D
C
6
5
abbidv
⊢
A
=
C
∧
B
=
D
→
x
|
x
∈
B
A
=
x
|
x
∈
D
C
7
df-bj-proj
⊢
A
Proj
B
=
x
|
x
∈
B
A
8
df-bj-proj
⊢
C
Proj
D
=
x
|
x
∈
D
C
9
6
7
8
3eqtr4g
⊢
A
=
C
∧
B
=
D
→
A
Proj
B
=
C
Proj
D
10
9
ex
⊢
A
=
C
→
B
=
D
→
A
Proj
B
=
C
Proj
D