Metamath Proof Explorer


Definition df-bj-2upl

Description: Definition of the Morse couple. See df-bj-1upl . New usage is discouraged because the precise definition is generally unimportant compared to the characteristic properties bj-2upleq , bj-2uplth , bj-2uplex , and the properties of the projections (see df-bj-pr1 and df-bj-pr2 ). (Contributed by BJ, 6-Oct-2018) (New usage is discouraged.)

Ref Expression
Assertion df-bj-2upl 𝐴 , 𝐵 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cB 𝐵
2 0 1 bj-c2uple 𝐴 , 𝐵
3 0 bj-c1upl 𝐴
4 c1o 1o
5 4 csn { 1o }
6 1 bj-ctag tag 𝐵
7 5 6 cxp ( { 1o } × tag 𝐵 )
8 3 7 cun ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) )
9 2 8 wceq 𝐴 , 𝐵 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) )