Metamath Proof Explorer


Definition df-bj-2upl

Description: Definition of the Morse couple. See df-bj-1upl . New usage is discouraged because the precise definition is generally unimportant compared to the characteristic properties bj-2upleq , bj-2uplth , bj-2uplex , and the properties of the projections (see df-bj-pr1 and df-bj-pr2 ). (Contributed by BJ, 6-Oct-2018) (New usage is discouraged.)

Ref Expression
Assertion df-bj-2upl
|- (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 cB
 |-  B
2 0 1 bj-c2uple
 |-  (| A ,, B |)
3 0 bj-c1upl
 |-  (| A |)
4 c1o
 |-  1o
5 4 csn
 |-  { 1o }
6 1 bj-ctag
 |-  tag B
7 5 6 cxp
 |-  ( { 1o } X. tag B )
8 3 7 cun
 |-  ( (| A |) u. ( { 1o } X. tag B ) )
9 2 8 wceq
 |-  (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) )