| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-1upleq |  |-  ( A = B -> (| A |) = (| B |) ) | 
						
							| 2 |  | bj-xtageq |  |-  ( C = D -> ( { 1o } X. tag C ) = ( { 1o } X. tag D ) ) | 
						
							| 3 |  | uneq12 |  |-  ( ( (| A |) = (| B |) /\ ( { 1o } X. tag C ) = ( { 1o } X. tag D ) ) -> ( (| A |) u. ( { 1o } X. tag C ) ) = ( (| B |) u. ( { 1o } X. tag D ) ) ) | 
						
							| 4 | 3 | ex |  |-  ( (| A |) = (| B |) -> ( ( { 1o } X. tag C ) = ( { 1o } X. tag D ) -> ( (| A |) u. ( { 1o } X. tag C ) ) = ( (| B |) u. ( { 1o } X. tag D ) ) ) ) | 
						
							| 5 | 1 2 4 | syl2im |  |-  ( A = B -> ( C = D -> ( (| A |) u. ( { 1o } X. tag C ) ) = ( (| B |) u. ( { 1o } X. tag D ) ) ) ) | 
						
							| 6 |  | df-bj-2upl |  |-  (| A ,, C |) = ( (| A |) u. ( { 1o } X. tag C ) ) | 
						
							| 7 |  | df-bj-2upl |  |-  (| B ,, D |) = ( (| B |) u. ( { 1o } X. tag D ) ) | 
						
							| 8 | 6 7 | eqeq12i |  |-  ( (| A ,, C |) = (| B ,, D |) <-> ( (| A |) u. ( { 1o } X. tag C ) ) = ( (| B |) u. ( { 1o } X. tag D ) ) ) | 
						
							| 9 | 5 8 | imbitrrdi |  |-  ( A = B -> ( C = D -> (| A ,, C |) = (| B ,, D |) ) ) |