| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-1upleq | ⊢ ( 𝐴  =  𝐵  →  ⦅ 𝐴 ⦆  =  ⦅ 𝐵 ⦆ ) | 
						
							| 2 |  | bj-xtageq | ⊢ ( 𝐶  =  𝐷  →  ( { 1o }  ×  tag  𝐶 )  =  ( { 1o }  ×  tag  𝐷 ) ) | 
						
							| 3 |  | uneq12 | ⊢ ( ( ⦅ 𝐴 ⦆  =  ⦅ 𝐵 ⦆  ∧  ( { 1o }  ×  tag  𝐶 )  =  ( { 1o }  ×  tag  𝐷 ) )  →  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐶 ) )  =  ( ⦅ 𝐵 ⦆  ∪  ( { 1o }  ×  tag  𝐷 ) ) ) | 
						
							| 4 | 3 | ex | ⊢ ( ⦅ 𝐴 ⦆  =  ⦅ 𝐵 ⦆  →  ( ( { 1o }  ×  tag  𝐶 )  =  ( { 1o }  ×  tag  𝐷 )  →  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐶 ) )  =  ( ⦅ 𝐵 ⦆  ∪  ( { 1o }  ×  tag  𝐷 ) ) ) ) | 
						
							| 5 | 1 2 4 | syl2im | ⊢ ( 𝐴  =  𝐵  →  ( 𝐶  =  𝐷  →  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐶 ) )  =  ( ⦅ 𝐵 ⦆  ∪  ( { 1o }  ×  tag  𝐷 ) ) ) ) | 
						
							| 6 |  | df-bj-2upl | ⊢ ⦅ 𝐴 ,  𝐶 ⦆  =  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐶 ) ) | 
						
							| 7 |  | df-bj-2upl | ⊢ ⦅ 𝐵 ,  𝐷 ⦆  =  ( ⦅ 𝐵 ⦆  ∪  ( { 1o }  ×  tag  𝐷 ) ) | 
						
							| 8 | 6 7 | eqeq12i | ⊢ ( ⦅ 𝐴 ,  𝐶 ⦆  =  ⦅ 𝐵 ,  𝐷 ⦆  ↔  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐶 ) )  =  ( ⦅ 𝐵 ⦆  ∪  ( { 1o }  ×  tag  𝐷 ) ) ) | 
						
							| 9 | 5 8 | imbitrrdi | ⊢ ( 𝐴  =  𝐵  →  ( 𝐶  =  𝐷  →  ⦅ 𝐴 ,  𝐶 ⦆  =  ⦅ 𝐵 ,  𝐷 ⦆ ) ) |