Metamath Proof Explorer


Theorem bj-2upleq

Description: Substitution property for (| - ,, - |) . (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-2upleq ( 𝐴 = 𝐵 → ( 𝐶 = 𝐷 → ⦅ 𝐴 , 𝐶 ⦆ = ⦅ 𝐵 , 𝐷 ⦆ ) )

Proof

Step Hyp Ref Expression
1 bj-1upleq ( 𝐴 = 𝐵 → ⦅ 𝐴 ⦆ = ⦅ 𝐵 ⦆ )
2 bj-xtageq ( 𝐶 = 𝐷 → ( { 1o } × tag 𝐶 ) = ( { 1o } × tag 𝐷 ) )
3 uneq12 ( ( ⦅ 𝐴 ⦆ = ⦅ 𝐵 ⦆ ∧ ( { 1o } × tag 𝐶 ) = ( { 1o } × tag 𝐷 ) ) → ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐶 ) ) = ( ⦅ 𝐵 ⦆ ∪ ( { 1o } × tag 𝐷 ) ) )
4 3 ex ( ⦅ 𝐴 ⦆ = ⦅ 𝐵 ⦆ → ( ( { 1o } × tag 𝐶 ) = ( { 1o } × tag 𝐷 ) → ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐶 ) ) = ( ⦅ 𝐵 ⦆ ∪ ( { 1o } × tag 𝐷 ) ) ) )
5 1 2 4 syl2im ( 𝐴 = 𝐵 → ( 𝐶 = 𝐷 → ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐶 ) ) = ( ⦅ 𝐵 ⦆ ∪ ( { 1o } × tag 𝐷 ) ) ) )
6 df-bj-2upl 𝐴 , 𝐶 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐶 ) )
7 df-bj-2upl 𝐵 , 𝐷 ⦆ = ( ⦅ 𝐵 ⦆ ∪ ( { 1o } × tag 𝐷 ) )
8 6 7 eqeq12i ( ⦅ 𝐴 , 𝐶 ⦆ = ⦅ 𝐵 , 𝐷 ⦆ ↔ ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐶 ) ) = ( ⦅ 𝐵 ⦆ ∪ ( { 1o } × tag 𝐷 ) ) )
9 5 8 syl6ibr ( 𝐴 = 𝐵 → ( 𝐶 = 𝐷 → ⦅ 𝐴 , 𝐶 ⦆ = ⦅ 𝐵 , 𝐷 ⦆ ) )