Metamath Proof Explorer


Theorem bj-pr21val

Description: Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-pr21val
|- pr1 (| A ,, B |) = A

Proof

Step Hyp Ref Expression
1 df-bj-2upl
 |-  (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) )
2 bj-pr1eq
 |-  ( (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) ) -> pr1 (| A ,, B |) = pr1 ( (| A |) u. ( { 1o } X. tag B ) ) )
3 1 2 ax-mp
 |-  pr1 (| A ,, B |) = pr1 ( (| A |) u. ( { 1o } X. tag B ) )
4 bj-pr1un
 |-  pr1 ( (| A |) u. ( { 1o } X. tag B ) ) = ( pr1 (| A |) u. pr1 ( { 1o } X. tag B ) )
5 bj-pr11val
 |-  pr1 (| A |) = A
6 bj-pr1val
 |-  pr1 ( { 1o } X. tag B ) = if ( 1o = (/) , B , (/) )
7 1n0
 |-  1o =/= (/)
8 7 neii
 |-  -. 1o = (/)
9 8 iffalsei
 |-  if ( 1o = (/) , B , (/) ) = (/)
10 6 9 eqtri
 |-  pr1 ( { 1o } X. tag B ) = (/)
11 5 10 uneq12i
 |-  ( pr1 (| A |) u. pr1 ( { 1o } X. tag B ) ) = ( A u. (/) )
12 un0
 |-  ( A u. (/) ) = A
13 11 12 eqtri
 |-  ( pr1 (| A |) u. pr1 ( { 1o } X. tag B ) ) = A
14 3 4 13 3eqtri
 |-  pr1 (| A ,, B |) = A