| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-bj-2upl |  |-  (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) ) | 
						
							| 2 |  | bj-pr1eq |  |-  ( (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) ) -> pr1 (| A ,, B |) = pr1 ( (| A |) u. ( { 1o } X. tag B ) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  pr1 (| A ,, B |) = pr1 ( (| A |) u. ( { 1o } X. tag B ) ) | 
						
							| 4 |  | bj-pr1un |  |-  pr1 ( (| A |) u. ( { 1o } X. tag B ) ) = ( pr1 (| A |) u. pr1 ( { 1o } X. tag B ) ) | 
						
							| 5 |  | bj-pr11val |  |-  pr1 (| A |) = A | 
						
							| 6 |  | bj-pr1val |  |-  pr1 ( { 1o } X. tag B ) = if ( 1o = (/) , B , (/) ) | 
						
							| 7 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 8 | 7 | neii |  |-  -. 1o = (/) | 
						
							| 9 | 8 | iffalsei |  |-  if ( 1o = (/) , B , (/) ) = (/) | 
						
							| 10 | 6 9 | eqtri |  |-  pr1 ( { 1o } X. tag B ) = (/) | 
						
							| 11 | 5 10 | uneq12i |  |-  ( pr1 (| A |) u. pr1 ( { 1o } X. tag B ) ) = ( A u. (/) ) | 
						
							| 12 |  | un0 |  |-  ( A u. (/) ) = A | 
						
							| 13 | 11 12 | eqtri |  |-  ( pr1 (| A |) u. pr1 ( { 1o } X. tag B ) ) = A | 
						
							| 14 | 3 4 13 | 3eqtri |  |-  pr1 (| A ,, B |) = A |