| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-bj-2upl |
|- (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) ) |
| 2 |
|
bj-pr1eq |
|- ( (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) ) -> pr1 (| A ,, B |) = pr1 ( (| A |) u. ( { 1o } X. tag B ) ) ) |
| 3 |
1 2
|
ax-mp |
|- pr1 (| A ,, B |) = pr1 ( (| A |) u. ( { 1o } X. tag B ) ) |
| 4 |
|
bj-pr1un |
|- pr1 ( (| A |) u. ( { 1o } X. tag B ) ) = ( pr1 (| A |) u. pr1 ( { 1o } X. tag B ) ) |
| 5 |
|
bj-pr11val |
|- pr1 (| A |) = A |
| 6 |
|
bj-pr1val |
|- pr1 ( { 1o } X. tag B ) = if ( 1o = (/) , B , (/) ) |
| 7 |
|
1n0 |
|- 1o =/= (/) |
| 8 |
7
|
neii |
|- -. 1o = (/) |
| 9 |
8
|
iffalsei |
|- if ( 1o = (/) , B , (/) ) = (/) |
| 10 |
6 9
|
eqtri |
|- pr1 ( { 1o } X. tag B ) = (/) |
| 11 |
5 10
|
uneq12i |
|- ( pr1 (| A |) u. pr1 ( { 1o } X. tag B ) ) = ( A u. (/) ) |
| 12 |
|
un0 |
|- ( A u. (/) ) = A |
| 13 |
11 12
|
eqtri |
|- ( pr1 (| A |) u. pr1 ( { 1o } X. tag B ) ) = A |
| 14 |
3 4 13
|
3eqtri |
|- pr1 (| A ,, B |) = A |