| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-pr21val |
|- pr1 (| A ,, B |) = A |
| 2 |
|
bj-pr1ex |
|- ( (| A ,, B |) e. _V -> pr1 (| A ,, B |) e. _V ) |
| 3 |
1 2
|
eqeltrrid |
|- ( (| A ,, B |) e. _V -> A e. _V ) |
| 4 |
|
bj-pr22val |
|- pr2 (| A ,, B |) = B |
| 5 |
|
bj-pr2ex |
|- ( (| A ,, B |) e. _V -> pr2 (| A ,, B |) e. _V ) |
| 6 |
4 5
|
eqeltrrid |
|- ( (| A ,, B |) e. _V -> B e. _V ) |
| 7 |
3 6
|
jca |
|- ( (| A ,, B |) e. _V -> ( A e. _V /\ B e. _V ) ) |
| 8 |
|
df-bj-2upl |
|- (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) ) |
| 9 |
|
bj-1uplex |
|- ( (| A |) e. _V <-> A e. _V ) |
| 10 |
9
|
biimpri |
|- ( A e. _V -> (| A |) e. _V ) |
| 11 |
|
snex |
|- { 1o } e. _V |
| 12 |
|
bj-xtagex |
|- ( { 1o } e. _V -> ( B e. _V -> ( { 1o } X. tag B ) e. _V ) ) |
| 13 |
11 12
|
ax-mp |
|- ( B e. _V -> ( { 1o } X. tag B ) e. _V ) |
| 14 |
|
unexg |
|- ( ( (| A |) e. _V /\ ( { 1o } X. tag B ) e. _V ) -> ( (| A |) u. ( { 1o } X. tag B ) ) e. _V ) |
| 15 |
10 13 14
|
syl2an |
|- ( ( A e. _V /\ B e. _V ) -> ( (| A |) u. ( { 1o } X. tag B ) ) e. _V ) |
| 16 |
8 15
|
eqeltrid |
|- ( ( A e. _V /\ B e. _V ) -> (| A ,, B |) e. _V ) |
| 17 |
7 16
|
impbii |
|- ( (| A ,, B |) e. _V <-> ( A e. _V /\ B e. _V ) ) |