| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-pr21val |  |-  pr1 (| A ,, B |) = A | 
						
							| 2 |  | bj-pr1ex |  |-  ( (| A ,, B |) e. _V -> pr1 (| A ,, B |) e. _V ) | 
						
							| 3 | 1 2 | eqeltrrid |  |-  ( (| A ,, B |) e. _V -> A e. _V ) | 
						
							| 4 |  | bj-pr22val |  |-  pr2 (| A ,, B |) = B | 
						
							| 5 |  | bj-pr2ex |  |-  ( (| A ,, B |) e. _V -> pr2 (| A ,, B |) e. _V ) | 
						
							| 6 | 4 5 | eqeltrrid |  |-  ( (| A ,, B |) e. _V -> B e. _V ) | 
						
							| 7 | 3 6 | jca |  |-  ( (| A ,, B |) e. _V -> ( A e. _V /\ B e. _V ) ) | 
						
							| 8 |  | df-bj-2upl |  |-  (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) ) | 
						
							| 9 |  | bj-1uplex |  |-  ( (| A |) e. _V <-> A e. _V ) | 
						
							| 10 | 9 | biimpri |  |-  ( A e. _V -> (| A |) e. _V ) | 
						
							| 11 |  | snex |  |-  { 1o } e. _V | 
						
							| 12 |  | bj-xtagex |  |-  ( { 1o } e. _V -> ( B e. _V -> ( { 1o } X. tag B ) e. _V ) ) | 
						
							| 13 | 11 12 | ax-mp |  |-  ( B e. _V -> ( { 1o } X. tag B ) e. _V ) | 
						
							| 14 |  | unexg |  |-  ( ( (| A |) e. _V /\ ( { 1o } X. tag B ) e. _V ) -> ( (| A |) u. ( { 1o } X. tag B ) ) e. _V ) | 
						
							| 15 | 10 13 14 | syl2an |  |-  ( ( A e. _V /\ B e. _V ) -> ( (| A |) u. ( { 1o } X. tag B ) ) e. _V ) | 
						
							| 16 | 8 15 | eqeltrid |  |-  ( ( A e. _V /\ B e. _V ) -> (| A ,, B |) e. _V ) | 
						
							| 17 | 7 16 | impbii |  |-  ( (| A ,, B |) e. _V <-> ( A e. _V /\ B e. _V ) ) |