Metamath Proof Explorer


Theorem bj-2uplex

Description: A couple is a set if and only if its coordinates are sets. For the advantages offered by the reverse closure property, see the section head comment. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-2uplex
|- ( (| A ,, B |) e. _V <-> ( A e. _V /\ B e. _V ) )

Proof

Step Hyp Ref Expression
1 bj-pr21val
 |-  pr1 (| A ,, B |) = A
2 bj-pr1ex
 |-  ( (| A ,, B |) e. _V -> pr1 (| A ,, B |) e. _V )
3 1 2 eqeltrrid
 |-  ( (| A ,, B |) e. _V -> A e. _V )
4 bj-pr22val
 |-  pr2 (| A ,, B |) = B
5 bj-pr2ex
 |-  ( (| A ,, B |) e. _V -> pr2 (| A ,, B |) e. _V )
6 4 5 eqeltrrid
 |-  ( (| A ,, B |) e. _V -> B e. _V )
7 3 6 jca
 |-  ( (| A ,, B |) e. _V -> ( A e. _V /\ B e. _V ) )
8 df-bj-2upl
 |-  (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) )
9 bj-1uplex
 |-  ( (| A |) e. _V <-> A e. _V )
10 9 biimpri
 |-  ( A e. _V -> (| A |) e. _V )
11 snex
 |-  { 1o } e. _V
12 bj-xtagex
 |-  ( { 1o } e. _V -> ( B e. _V -> ( { 1o } X. tag B ) e. _V ) )
13 11 12 ax-mp
 |-  ( B e. _V -> ( { 1o } X. tag B ) e. _V )
14 unexg
 |-  ( ( (| A |) e. _V /\ ( { 1o } X. tag B ) e. _V ) -> ( (| A |) u. ( { 1o } X. tag B ) ) e. _V )
15 10 13 14 syl2an
 |-  ( ( A e. _V /\ B e. _V ) -> ( (| A |) u. ( { 1o } X. tag B ) ) e. _V )
16 8 15 eqeltrid
 |-  ( ( A e. _V /\ B e. _V ) -> (| A ,, B |) e. _V )
17 7 16 impbii
 |-  ( (| A ,, B |) e. _V <-> ( A e. _V /\ B e. _V ) )