Metamath Proof Explorer


Theorem bj-xtagex

Description: The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019)

Ref Expression
Assertion bj-xtagex
|- ( A e. V -> ( B e. W -> ( A X. tag B ) e. _V ) )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( B e. W -> B e. _V )
2 bj-tagex
 |-  ( B e. _V <-> tag B e. _V )
3 1 2 sylib
 |-  ( B e. W -> tag B e. _V )
4 bj-xpexg2
 |-  ( A e. V -> ( tag B e. _V -> ( A X. tag B ) e. _V ) )
5 3 4 syl5
 |-  ( A e. V -> ( B e. W -> ( A X. tag B ) e. _V ) )