Description: The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-xtagex | |- ( A e. V -> ( B e. W -> ( A X. tag B ) e. _V ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex | |- ( B e. W -> B e. _V ) | |
| 2 | bj-tagex | |- ( B e. _V <-> tag B e. _V ) | |
| 3 | 1 2 | sylib | |- ( B e. W -> tag B e. _V ) | 
| 4 | bj-xpexg2 | |- ( A e. V -> ( tag B e. _V -> ( A X. tag B ) e. _V ) ) | |
| 5 | 3 4 | syl5 | |- ( A e. V -> ( B e. W -> ( A X. tag B ) e. _V ) ) |