Metamath Proof Explorer


Theorem bj-xtagex

Description: The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019)

Ref Expression
Assertion bj-xtagex ( 𝐴𝑉 → ( 𝐵𝑊 → ( 𝐴 × tag 𝐵 ) ∈ V ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐵𝑊𝐵 ∈ V )
2 bj-tagex ( 𝐵 ∈ V ↔ tag 𝐵 ∈ V )
3 1 2 sylib ( 𝐵𝑊 → tag 𝐵 ∈ V )
4 bj-xpexg2 ( 𝐴𝑉 → ( tag 𝐵 ∈ V → ( 𝐴 × tag 𝐵 ) ∈ V ) )
5 3 4 syl5 ( 𝐴𝑉 → ( 𝐵𝑊 → ( 𝐴 × tag 𝐵 ) ∈ V ) )