Metamath Proof Explorer
		
		
		
		Description:  The product of a set and the tagging of a set is a set.  (Contributed by BJ, 2-Apr-2019)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | bj-xtagex | ⊢  ( 𝐴  ∈  𝑉  →  ( 𝐵  ∈  𝑊  →  ( 𝐴  ×  tag  𝐵 )  ∈  V ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝐵  ∈  𝑊  →  𝐵  ∈  V ) | 
						
							| 2 |  | bj-tagex | ⊢ ( 𝐵  ∈  V  ↔  tag  𝐵  ∈  V ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( 𝐵  ∈  𝑊  →  tag  𝐵  ∈  V ) | 
						
							| 4 |  | bj-xpexg2 | ⊢ ( 𝐴  ∈  𝑉  →  ( tag  𝐵  ∈  V  →  ( 𝐴  ×  tag  𝐵 )  ∈  V ) ) | 
						
							| 5 | 3 4 | syl5 | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐵  ∈  𝑊  →  ( 𝐴  ×  tag  𝐵 )  ∈  V ) ) |