Metamath Proof Explorer
Description: The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019)
|
|
Ref |
Expression |
|
Assertion |
bj-xtagex |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ∈ 𝑊 → ( 𝐴 × tag 𝐵 ) ∈ V ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) |
2 |
|
bj-tagex |
⊢ ( 𝐵 ∈ V ↔ tag 𝐵 ∈ V ) |
3 |
1 2
|
sylib |
⊢ ( 𝐵 ∈ 𝑊 → tag 𝐵 ∈ V ) |
4 |
|
bj-xpexg2 |
⊢ ( 𝐴 ∈ 𝑉 → ( tag 𝐵 ∈ V → ( 𝐴 × tag 𝐵 ) ∈ V ) ) |
5 |
3 4
|
syl5 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ∈ 𝑊 → ( 𝐴 × tag 𝐵 ) ∈ V ) ) |