Metamath Proof Explorer


Theorem bj-2upln0

Description: A couple is nonempty. (Contributed by BJ, 21-Apr-2019)

Ref Expression
Assertion bj-2upln0
|- (| A ,, B |) =/= (/)

Proof

Step Hyp Ref Expression
1 df-bj-2upl
 |-  (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) )
2 bj-1upln0
 |-  (| A |) =/= (/)
3 0pss
 |-  ( (/) C. (| A |) <-> (| A |) =/= (/) )
4 2 3 mpbir
 |-  (/) C. (| A |)
5 ssun1
 |-  (| A |) C_ ( (| A |) u. ( { 1o } X. tag B ) )
6 psssstr
 |-  ( ( (/) C. (| A |) /\ (| A |) C_ ( (| A |) u. ( { 1o } X. tag B ) ) ) -> (/) C. ( (| A |) u. ( { 1o } X. tag B ) ) )
7 4 5 6 mp2an
 |-  (/) C. ( (| A |) u. ( { 1o } X. tag B ) )
8 0pss
 |-  ( (/) C. ( (| A |) u. ( { 1o } X. tag B ) ) <-> ( (| A |) u. ( { 1o } X. tag B ) ) =/= (/) )
9 7 8 mpbi
 |-  ( (| A |) u. ( { 1o } X. tag B ) ) =/= (/)
10 1 9 eqnetri
 |-  (| A ,, B |) =/= (/)