| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-bj-2upl |
|- (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) ) |
| 2 |
|
bj-1upln0 |
|- (| A |) =/= (/) |
| 3 |
|
0pss |
|- ( (/) C. (| A |) <-> (| A |) =/= (/) ) |
| 4 |
2 3
|
mpbir |
|- (/) C. (| A |) |
| 5 |
|
ssun1 |
|- (| A |) C_ ( (| A |) u. ( { 1o } X. tag B ) ) |
| 6 |
|
psssstr |
|- ( ( (/) C. (| A |) /\ (| A |) C_ ( (| A |) u. ( { 1o } X. tag B ) ) ) -> (/) C. ( (| A |) u. ( { 1o } X. tag B ) ) ) |
| 7 |
4 5 6
|
mp2an |
|- (/) C. ( (| A |) u. ( { 1o } X. tag B ) ) |
| 8 |
|
0pss |
|- ( (/) C. ( (| A |) u. ( { 1o } X. tag B ) ) <-> ( (| A |) u. ( { 1o } X. tag B ) ) =/= (/) ) |
| 9 |
7 8
|
mpbi |
|- ( (| A |) u. ( { 1o } X. tag B ) ) =/= (/) |
| 10 |
1 9
|
eqnetri |
|- (| A ,, B |) =/= (/) |