| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-bj-2upl |  |-  (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) ) | 
						
							| 2 |  | bj-1upln0 |  |-  (| A |) =/= (/) | 
						
							| 3 |  | 0pss |  |-  ( (/) C. (| A |) <-> (| A |) =/= (/) ) | 
						
							| 4 | 2 3 | mpbir |  |-  (/) C. (| A |) | 
						
							| 5 |  | ssun1 |  |-  (| A |) C_ ( (| A |) u. ( { 1o } X. tag B ) ) | 
						
							| 6 |  | psssstr |  |-  ( ( (/) C. (| A |) /\ (| A |) C_ ( (| A |) u. ( { 1o } X. tag B ) ) ) -> (/) C. ( (| A |) u. ( { 1o } X. tag B ) ) ) | 
						
							| 7 | 4 5 6 | mp2an |  |-  (/) C. ( (| A |) u. ( { 1o } X. tag B ) ) | 
						
							| 8 |  | 0pss |  |-  ( (/) C. ( (| A |) u. ( { 1o } X. tag B ) ) <-> ( (| A |) u. ( { 1o } X. tag B ) ) =/= (/) ) | 
						
							| 9 | 7 8 | mpbi |  |-  ( (| A |) u. ( { 1o } X. tag B ) ) =/= (/) | 
						
							| 10 | 1 9 | eqnetri |  |-  (| A ,, B |) =/= (/) |