Metamath Proof Explorer


Theorem bj-2upln0

Description: A couple is nonempty. (Contributed by BJ, 21-Apr-2019)

Ref Expression
Assertion bj-2upln0 𝐴 , 𝐵 ⦆ ≠ ∅

Proof

Step Hyp Ref Expression
1 df-bj-2upl 𝐴 , 𝐵 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) )
2 bj-1upln0 𝐴 ⦆ ≠ ∅
3 0pss ( ∅ ⊊ ⦅ 𝐴 ⦆ ↔ ⦅ 𝐴 ⦆ ≠ ∅ )
4 2 3 mpbir ∅ ⊊ ⦅ 𝐴
5 ssun1 𝐴 ⦆ ⊆ ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) )
6 psssstr ( ( ∅ ⊊ ⦅ 𝐴 ⦆ ∧ ⦅ 𝐴 ⦆ ⊆ ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) ) → ∅ ⊊ ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) )
7 4 5 6 mp2an ∅ ⊊ ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) )
8 0pss ( ∅ ⊊ ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) ↔ ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) ≠ ∅ )
9 7 8 mpbi ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) ≠ ∅
10 1 9 eqnetri 𝐴 , 𝐵 ⦆ ≠ ∅