Step |
Hyp |
Ref |
Expression |
1 |
|
df-bj-2upl |
⊢ ⦅ 𝐴 , 𝐵 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) |
2 |
|
bj-1upln0 |
⊢ ⦅ 𝐴 ⦆ ≠ ∅ |
3 |
|
0pss |
⊢ ( ∅ ⊊ ⦅ 𝐴 ⦆ ↔ ⦅ 𝐴 ⦆ ≠ ∅ ) |
4 |
2 3
|
mpbir |
⊢ ∅ ⊊ ⦅ 𝐴 ⦆ |
5 |
|
ssun1 |
⊢ ⦅ 𝐴 ⦆ ⊆ ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) |
6 |
|
psssstr |
⊢ ( ( ∅ ⊊ ⦅ 𝐴 ⦆ ∧ ⦅ 𝐴 ⦆ ⊆ ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) ) → ∅ ⊊ ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) ) |
7 |
4 5 6
|
mp2an |
⊢ ∅ ⊊ ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) |
8 |
|
0pss |
⊢ ( ∅ ⊊ ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) ↔ ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) ≠ ∅ ) |
9 |
7 8
|
mpbi |
⊢ ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) ≠ ∅ |
10 |
1 9
|
eqnetri |
⊢ ⦅ 𝐴 , 𝐵 ⦆ ≠ ∅ |