Metamath Proof Explorer


Theorem bj-1upln0

Description: A monuple is nonempty. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-1upln0 𝐴 ⦆ ≠ ∅

Proof

Step Hyp Ref Expression
1 df-bj-1upl 𝐴 ⦆ = ( { ∅ } × tag 𝐴 )
2 0nep0 ∅ ≠ { ∅ }
3 2 necomi { ∅ } ≠ ∅
4 bj-tagn0 tag 𝐴 ≠ ∅
5 xpnz ( ( { ∅ } ≠ ∅ ∧ tag 𝐴 ≠ ∅ ) ↔ ( { ∅ } × tag 𝐴 ) ≠ ∅ )
6 5 biimpi ( ( { ∅ } ≠ ∅ ∧ tag 𝐴 ≠ ∅ ) → ( { ∅ } × tag 𝐴 ) ≠ ∅ )
7 3 4 6 mp2an ( { ∅ } × tag 𝐴 ) ≠ ∅
8 1 7 eqnetri 𝐴 ⦆ ≠ ∅