Metamath Proof Explorer


Theorem bj-tagn0

Description: The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-tagn0 tag 𝐴 ≠ ∅

Proof

Step Hyp Ref Expression
1 bj-0eltag ∅ ∈ tag 𝐴
2 1 ne0ii tag 𝐴 ≠ ∅