Metamath Proof Explorer


Theorem bj-tagss

Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-tagss tag 𝐴 ⊆ 𝒫 𝐴

Proof

Step Hyp Ref Expression
1 df-bj-tag tag 𝐴 = ( sngl 𝐴 ∪ { ∅ } )
2 bj-snglss sngl 𝐴 ⊆ 𝒫 𝐴
3 0elpw ∅ ∈ 𝒫 𝐴
4 0ex ∅ ∈ V
5 4 snss ( ∅ ∈ 𝒫 𝐴 ↔ { ∅ } ⊆ 𝒫 𝐴 )
6 3 5 mpbi { ∅ } ⊆ 𝒫 𝐴
7 2 6 unssi ( sngl 𝐴 ∪ { ∅ } ) ⊆ 𝒫 𝐴
8 1 7 eqsstri tag 𝐴 ⊆ 𝒫 𝐴