Metamath Proof Explorer


Theorem bj-tagss

Description: The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-tagss
|- tag A C_ ~P A

Proof

Step Hyp Ref Expression
1 df-bj-tag
 |-  tag A = ( sngl A u. { (/) } )
2 bj-snglss
 |-  sngl A C_ ~P A
3 0elpw
 |-  (/) e. ~P A
4 0ex
 |-  (/) e. _V
5 4 snss
 |-  ( (/) e. ~P A <-> { (/) } C_ ~P A )
6 3 5 mpbi
 |-  { (/) } C_ ~P A
7 2 6 unssi
 |-  ( sngl A u. { (/) } ) C_ ~P A
8 1 7 eqsstri
 |-  tag A C_ ~P A