Metamath Proof Explorer


Theorem bj-0eltag

Description: The empty set belongs to the tagging of a class. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-0eltag ∅ ∈ tag 𝐴

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 1 snid ∅ ∈ { ∅ }
3 2 olci ( ∅ ∈ sngl 𝐴 ∨ ∅ ∈ { ∅ } )
4 elun ( ∅ ∈ ( sngl 𝐴 ∪ { ∅ } ) ↔ ( ∅ ∈ sngl 𝐴 ∨ ∅ ∈ { ∅ } ) )
5 3 4 mpbir ∅ ∈ ( sngl 𝐴 ∪ { ∅ } )
6 df-bj-tag tag 𝐴 = ( sngl 𝐴 ∪ { ∅ } )
7 5 6 eleqtrri ∅ ∈ tag 𝐴