Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
"Singletonization" and tagging
bj-0eltag
Next ⟩
bj-tagn0
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-0eltag
Description:
The empty set belongs to the tagging of a class.
(Contributed by
BJ
, 6-Apr-2019)
Ref
Expression
Assertion
bj-0eltag
⊢
∅
∈
tag
A
Proof
Step
Hyp
Ref
Expression
1
0ex
⊢
∅
∈
V
2
1
snid
⊢
∅
∈
∅
3
2
olci
⊢
∅
∈
sngl
A
∨
∅
∈
∅
4
elun
⊢
∅
∈
sngl
A
∪
∅
↔
∅
∈
sngl
A
∨
∅
∈
∅
5
3
4
mpbir
⊢
∅
∈
sngl
A
∪
∅
6
df-bj-tag
⊢
tag
A
=
sngl
A
∪
∅
7
5
6
eleqtrri
⊢
∅
∈
tag
A