Metamath Proof Explorer


Theorem bj-0eltag

Description: The empty set belongs to the tagging of a class. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-0eltag tag A

Proof

Step Hyp Ref Expression
1 0ex V
2 1 snid
3 2 olci sngl A
4 elun sngl A sngl A
5 3 4 mpbir sngl A
6 df-bj-tag tag A = sngl A
7 5 6 eleqtrri tag A