Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Tuples of classes
bj-1upln0
Next ⟩
bj-c2uple
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-1upln0
Description:
A monuple is nonempty.
(Contributed by
BJ
, 6-Apr-2019)
Ref
Expression
Assertion
bj-1upln0
⊢
A
≠
∅
Proof
Step
Hyp
Ref
Expression
1
df-bj-1upl
⊢
A
=
∅
×
tag
A
2
0nep0
⊢
∅
≠
∅
3
2
necomi
⊢
∅
≠
∅
4
bj-tagn0
⊢
tag
A
≠
∅
5
xpnz
⊢
∅
≠
∅
∧
tag
A
≠
∅
↔
∅
×
tag
A
≠
∅
6
5
biimpi
⊢
∅
≠
∅
∧
tag
A
≠
∅
→
∅
×
tag
A
≠
∅
7
3
4
6
mp2an
⊢
∅
×
tag
A
≠
∅
8
1
7
eqnetri
⊢
A
≠
∅