Metamath Proof Explorer


Theorem bj-1upln0

Description: A monuple is nonempty. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-1upln0
|- (| A |) =/= (/)

Proof

Step Hyp Ref Expression
1 df-bj-1upl
 |-  (| A |) = ( { (/) } X. tag A )
2 0nep0
 |-  (/) =/= { (/) }
3 2 necomi
 |-  { (/) } =/= (/)
4 bj-tagn0
 |-  tag A =/= (/)
5 xpnz
 |-  ( ( { (/) } =/= (/) /\ tag A =/= (/) ) <-> ( { (/) } X. tag A ) =/= (/) )
6 5 biimpi
 |-  ( ( { (/) } =/= (/) /\ tag A =/= (/) ) -> ( { (/) } X. tag A ) =/= (/) )
7 3 4 6 mp2an
 |-  ( { (/) } X. tag A ) =/= (/)
8 1 7 eqnetri
 |-  (| A |) =/= (/)