Step |
Hyp |
Ref |
Expression |
1 |
|
xpundi |
⊢ ( { ∅ } × ( tag 𝐴 ∪ tag 𝐶 ) ) = ( ( { ∅ } × tag 𝐴 ) ∪ ( { ∅ } × tag 𝐶 ) ) |
2 |
1
|
difeq2i |
⊢ ( ( { 1o } × tag 𝐵 ) ∖ ( { ∅ } × ( tag 𝐴 ∪ tag 𝐶 ) ) ) = ( ( { 1o } × tag 𝐵 ) ∖ ( ( { ∅ } × tag 𝐴 ) ∪ ( { ∅ } × tag 𝐶 ) ) ) |
3 |
|
incom |
⊢ ( ( { ∅ } × ( tag 𝐴 ∪ tag 𝐶 ) ) ∩ ( { 1o } × tag 𝐵 ) ) = ( ( { 1o } × tag 𝐵 ) ∩ ( { ∅ } × ( tag 𝐴 ∪ tag 𝐶 ) ) ) |
4 |
|
xp01disjl |
⊢ ( ( { ∅ } × ( tag 𝐴 ∪ tag 𝐶 ) ) ∩ ( { 1o } × tag 𝐵 ) ) = ∅ |
5 |
3 4
|
eqtr3i |
⊢ ( ( { 1o } × tag 𝐵 ) ∩ ( { ∅ } × ( tag 𝐴 ∪ tag 𝐶 ) ) ) = ∅ |
6 |
|
disjdif2 |
⊢ ( ( ( { 1o } × tag 𝐵 ) ∩ ( { ∅ } × ( tag 𝐴 ∪ tag 𝐶 ) ) ) = ∅ → ( ( { 1o } × tag 𝐵 ) ∖ ( { ∅ } × ( tag 𝐴 ∪ tag 𝐶 ) ) ) = ( { 1o } × tag 𝐵 ) ) |
7 |
5 6
|
ax-mp |
⊢ ( ( { 1o } × tag 𝐵 ) ∖ ( { ∅ } × ( tag 𝐴 ∪ tag 𝐶 ) ) ) = ( { 1o } × tag 𝐵 ) |
8 |
|
1oex |
⊢ 1o ∈ V |
9 |
8
|
snnz |
⊢ { 1o } ≠ ∅ |
10 |
|
bj-tagn0 |
⊢ tag 𝐵 ≠ ∅ |
11 |
9 10
|
pm3.2i |
⊢ ( { 1o } ≠ ∅ ∧ tag 𝐵 ≠ ∅ ) |
12 |
|
xpnz |
⊢ ( ( { 1o } ≠ ∅ ∧ tag 𝐵 ≠ ∅ ) ↔ ( { 1o } × tag 𝐵 ) ≠ ∅ ) |
13 |
11 12
|
mpbi |
⊢ ( { 1o } × tag 𝐵 ) ≠ ∅ |
14 |
7 13
|
eqnetri |
⊢ ( ( { 1o } × tag 𝐵 ) ∖ ( { ∅ } × ( tag 𝐴 ∪ tag 𝐶 ) ) ) ≠ ∅ |
15 |
2 14
|
eqnetrri |
⊢ ( ( { 1o } × tag 𝐵 ) ∖ ( ( { ∅ } × tag 𝐴 ) ∪ ( { ∅ } × tag 𝐶 ) ) ) ≠ ∅ |
16 |
|
0pss |
⊢ ( ∅ ⊊ ( ( { 1o } × tag 𝐵 ) ∖ ( ( { ∅ } × tag 𝐴 ) ∪ ( { ∅ } × tag 𝐶 ) ) ) ↔ ( ( { 1o } × tag 𝐵 ) ∖ ( ( { ∅ } × tag 𝐴 ) ∪ ( { ∅ } × tag 𝐶 ) ) ) ≠ ∅ ) |
17 |
15 16
|
mpbir |
⊢ ∅ ⊊ ( ( { 1o } × tag 𝐵 ) ∖ ( ( { ∅ } × tag 𝐴 ) ∪ ( { ∅ } × tag 𝐶 ) ) ) |
18 |
|
ssun2 |
⊢ ( { ∅ } × tag 𝐶 ) ⊆ ( ( { ∅ } × tag 𝐴 ) ∪ ( { ∅ } × tag 𝐶 ) ) |
19 |
|
sscon |
⊢ ( ( { ∅ } × tag 𝐶 ) ⊆ ( ( { ∅ } × tag 𝐴 ) ∪ ( { ∅ } × tag 𝐶 ) ) → ( ( { 1o } × tag 𝐵 ) ∖ ( ( { ∅ } × tag 𝐴 ) ∪ ( { ∅ } × tag 𝐶 ) ) ) ⊆ ( ( { 1o } × tag 𝐵 ) ∖ ( { ∅ } × tag 𝐶 ) ) ) |
20 |
18 19
|
ax-mp |
⊢ ( ( { 1o } × tag 𝐵 ) ∖ ( ( { ∅ } × tag 𝐴 ) ∪ ( { ∅ } × tag 𝐶 ) ) ) ⊆ ( ( { 1o } × tag 𝐵 ) ∖ ( { ∅ } × tag 𝐶 ) ) |
21 |
|
ssun2 |
⊢ ( { 1o } × tag 𝐵 ) ⊆ ( ( { ∅ } × tag 𝐴 ) ∪ ( { 1o } × tag 𝐵 ) ) |
22 |
|
ssdif |
⊢ ( ( { 1o } × tag 𝐵 ) ⊆ ( ( { ∅ } × tag 𝐴 ) ∪ ( { 1o } × tag 𝐵 ) ) → ( ( { 1o } × tag 𝐵 ) ∖ ( { ∅ } × tag 𝐶 ) ) ⊆ ( ( ( { ∅ } × tag 𝐴 ) ∪ ( { 1o } × tag 𝐵 ) ) ∖ ( { ∅ } × tag 𝐶 ) ) ) |
23 |
21 22
|
ax-mp |
⊢ ( ( { 1o } × tag 𝐵 ) ∖ ( { ∅ } × tag 𝐶 ) ) ⊆ ( ( ( { ∅ } × tag 𝐴 ) ∪ ( { 1o } × tag 𝐵 ) ) ∖ ( { ∅ } × tag 𝐶 ) ) |
24 |
20 23
|
sstri |
⊢ ( ( { 1o } × tag 𝐵 ) ∖ ( ( { ∅ } × tag 𝐴 ) ∪ ( { ∅ } × tag 𝐶 ) ) ) ⊆ ( ( ( { ∅ } × tag 𝐴 ) ∪ ( { 1o } × tag 𝐵 ) ) ∖ ( { ∅ } × tag 𝐶 ) ) |
25 |
|
df-bj-2upl |
⊢ ⦅ 𝐴 , 𝐵 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) |
26 |
|
df-bj-1upl |
⊢ ⦅ 𝐴 ⦆ = ( { ∅ } × tag 𝐴 ) |
27 |
26
|
uneq1i |
⊢ ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) = ( ( { ∅ } × tag 𝐴 ) ∪ ( { 1o } × tag 𝐵 ) ) |
28 |
25 27
|
eqtri |
⊢ ⦅ 𝐴 , 𝐵 ⦆ = ( ( { ∅ } × tag 𝐴 ) ∪ ( { 1o } × tag 𝐵 ) ) |
29 |
28
|
difeq1i |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ ∖ ( { ∅ } × tag 𝐶 ) ) = ( ( ( { ∅ } × tag 𝐴 ) ∪ ( { 1o } × tag 𝐵 ) ) ∖ ( { ∅ } × tag 𝐶 ) ) |
30 |
24 29
|
sseqtrri |
⊢ ( ( { 1o } × tag 𝐵 ) ∖ ( ( { ∅ } × tag 𝐴 ) ∪ ( { ∅ } × tag 𝐶 ) ) ) ⊆ ( ⦅ 𝐴 , 𝐵 ⦆ ∖ ( { ∅ } × tag 𝐶 ) ) |
31 |
|
df-bj-1upl |
⊢ ⦅ 𝐶 ⦆ = ( { ∅ } × tag 𝐶 ) |
32 |
31
|
difeq2i |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ ∖ ⦅ 𝐶 ⦆ ) = ( ⦅ 𝐴 , 𝐵 ⦆ ∖ ( { ∅ } × tag 𝐶 ) ) |
33 |
30 32
|
sseqtrri |
⊢ ( ( { 1o } × tag 𝐵 ) ∖ ( ( { ∅ } × tag 𝐴 ) ∪ ( { ∅ } × tag 𝐶 ) ) ) ⊆ ( ⦅ 𝐴 , 𝐵 ⦆ ∖ ⦅ 𝐶 ⦆ ) |
34 |
|
psssstr |
⊢ ( ( ∅ ⊊ ( ( { 1o } × tag 𝐵 ) ∖ ( ( { ∅ } × tag 𝐴 ) ∪ ( { ∅ } × tag 𝐶 ) ) ) ∧ ( ( { 1o } × tag 𝐵 ) ∖ ( ( { ∅ } × tag 𝐴 ) ∪ ( { ∅ } × tag 𝐶 ) ) ) ⊆ ( ⦅ 𝐴 , 𝐵 ⦆ ∖ ⦅ 𝐶 ⦆ ) ) → ∅ ⊊ ( ⦅ 𝐴 , 𝐵 ⦆ ∖ ⦅ 𝐶 ⦆ ) ) |
35 |
17 33 34
|
mp2an |
⊢ ∅ ⊊ ( ⦅ 𝐴 , 𝐵 ⦆ ∖ ⦅ 𝐶 ⦆ ) |
36 |
|
0pss |
⊢ ( ∅ ⊊ ( ⦅ 𝐴 , 𝐵 ⦆ ∖ ⦅ 𝐶 ⦆ ) ↔ ( ⦅ 𝐴 , 𝐵 ⦆ ∖ ⦅ 𝐶 ⦆ ) ≠ ∅ ) |
37 |
35 36
|
mpbi |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ ∖ ⦅ 𝐶 ⦆ ) ≠ ∅ |
38 |
|
difn0 |
⊢ ( ( ⦅ 𝐴 , 𝐵 ⦆ ∖ ⦅ 𝐶 ⦆ ) ≠ ∅ → ⦅ 𝐴 , 𝐵 ⦆ ≠ ⦅ 𝐶 ⦆ ) |
39 |
37 38
|
ax-mp |
⊢ ⦅ 𝐴 , 𝐵 ⦆ ≠ ⦅ 𝐶 ⦆ |