Step |
Hyp |
Ref |
Expression |
1 |
|
xpundi |
|- ( { (/) } X. ( tag A u. tag C ) ) = ( ( { (/) } X. tag A ) u. ( { (/) } X. tag C ) ) |
2 |
1
|
difeq2i |
|- ( ( { 1o } X. tag B ) \ ( { (/) } X. ( tag A u. tag C ) ) ) = ( ( { 1o } X. tag B ) \ ( ( { (/) } X. tag A ) u. ( { (/) } X. tag C ) ) ) |
3 |
|
incom |
|- ( ( { (/) } X. ( tag A u. tag C ) ) i^i ( { 1o } X. tag B ) ) = ( ( { 1o } X. tag B ) i^i ( { (/) } X. ( tag A u. tag C ) ) ) |
4 |
|
xp01disjl |
|- ( ( { (/) } X. ( tag A u. tag C ) ) i^i ( { 1o } X. tag B ) ) = (/) |
5 |
3 4
|
eqtr3i |
|- ( ( { 1o } X. tag B ) i^i ( { (/) } X. ( tag A u. tag C ) ) ) = (/) |
6 |
|
disjdif2 |
|- ( ( ( { 1o } X. tag B ) i^i ( { (/) } X. ( tag A u. tag C ) ) ) = (/) -> ( ( { 1o } X. tag B ) \ ( { (/) } X. ( tag A u. tag C ) ) ) = ( { 1o } X. tag B ) ) |
7 |
5 6
|
ax-mp |
|- ( ( { 1o } X. tag B ) \ ( { (/) } X. ( tag A u. tag C ) ) ) = ( { 1o } X. tag B ) |
8 |
|
1oex |
|- 1o e. _V |
9 |
8
|
snnz |
|- { 1o } =/= (/) |
10 |
|
bj-tagn0 |
|- tag B =/= (/) |
11 |
9 10
|
pm3.2i |
|- ( { 1o } =/= (/) /\ tag B =/= (/) ) |
12 |
|
xpnz |
|- ( ( { 1o } =/= (/) /\ tag B =/= (/) ) <-> ( { 1o } X. tag B ) =/= (/) ) |
13 |
11 12
|
mpbi |
|- ( { 1o } X. tag B ) =/= (/) |
14 |
7 13
|
eqnetri |
|- ( ( { 1o } X. tag B ) \ ( { (/) } X. ( tag A u. tag C ) ) ) =/= (/) |
15 |
2 14
|
eqnetrri |
|- ( ( { 1o } X. tag B ) \ ( ( { (/) } X. tag A ) u. ( { (/) } X. tag C ) ) ) =/= (/) |
16 |
|
0pss |
|- ( (/) C. ( ( { 1o } X. tag B ) \ ( ( { (/) } X. tag A ) u. ( { (/) } X. tag C ) ) ) <-> ( ( { 1o } X. tag B ) \ ( ( { (/) } X. tag A ) u. ( { (/) } X. tag C ) ) ) =/= (/) ) |
17 |
15 16
|
mpbir |
|- (/) C. ( ( { 1o } X. tag B ) \ ( ( { (/) } X. tag A ) u. ( { (/) } X. tag C ) ) ) |
18 |
|
ssun2 |
|- ( { (/) } X. tag C ) C_ ( ( { (/) } X. tag A ) u. ( { (/) } X. tag C ) ) |
19 |
|
sscon |
|- ( ( { (/) } X. tag C ) C_ ( ( { (/) } X. tag A ) u. ( { (/) } X. tag C ) ) -> ( ( { 1o } X. tag B ) \ ( ( { (/) } X. tag A ) u. ( { (/) } X. tag C ) ) ) C_ ( ( { 1o } X. tag B ) \ ( { (/) } X. tag C ) ) ) |
20 |
18 19
|
ax-mp |
|- ( ( { 1o } X. tag B ) \ ( ( { (/) } X. tag A ) u. ( { (/) } X. tag C ) ) ) C_ ( ( { 1o } X. tag B ) \ ( { (/) } X. tag C ) ) |
21 |
|
ssun2 |
|- ( { 1o } X. tag B ) C_ ( ( { (/) } X. tag A ) u. ( { 1o } X. tag B ) ) |
22 |
|
ssdif |
|- ( ( { 1o } X. tag B ) C_ ( ( { (/) } X. tag A ) u. ( { 1o } X. tag B ) ) -> ( ( { 1o } X. tag B ) \ ( { (/) } X. tag C ) ) C_ ( ( ( { (/) } X. tag A ) u. ( { 1o } X. tag B ) ) \ ( { (/) } X. tag C ) ) ) |
23 |
21 22
|
ax-mp |
|- ( ( { 1o } X. tag B ) \ ( { (/) } X. tag C ) ) C_ ( ( ( { (/) } X. tag A ) u. ( { 1o } X. tag B ) ) \ ( { (/) } X. tag C ) ) |
24 |
20 23
|
sstri |
|- ( ( { 1o } X. tag B ) \ ( ( { (/) } X. tag A ) u. ( { (/) } X. tag C ) ) ) C_ ( ( ( { (/) } X. tag A ) u. ( { 1o } X. tag B ) ) \ ( { (/) } X. tag C ) ) |
25 |
|
df-bj-2upl |
|- (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) ) |
26 |
|
df-bj-1upl |
|- (| A |) = ( { (/) } X. tag A ) |
27 |
26
|
uneq1i |
|- ( (| A |) u. ( { 1o } X. tag B ) ) = ( ( { (/) } X. tag A ) u. ( { 1o } X. tag B ) ) |
28 |
25 27
|
eqtri |
|- (| A ,, B |) = ( ( { (/) } X. tag A ) u. ( { 1o } X. tag B ) ) |
29 |
28
|
difeq1i |
|- ( (| A ,, B |) \ ( { (/) } X. tag C ) ) = ( ( ( { (/) } X. tag A ) u. ( { 1o } X. tag B ) ) \ ( { (/) } X. tag C ) ) |
30 |
24 29
|
sseqtrri |
|- ( ( { 1o } X. tag B ) \ ( ( { (/) } X. tag A ) u. ( { (/) } X. tag C ) ) ) C_ ( (| A ,, B |) \ ( { (/) } X. tag C ) ) |
31 |
|
df-bj-1upl |
|- (| C |) = ( { (/) } X. tag C ) |
32 |
31
|
difeq2i |
|- ( (| A ,, B |) \ (| C |) ) = ( (| A ,, B |) \ ( { (/) } X. tag C ) ) |
33 |
30 32
|
sseqtrri |
|- ( ( { 1o } X. tag B ) \ ( ( { (/) } X. tag A ) u. ( { (/) } X. tag C ) ) ) C_ ( (| A ,, B |) \ (| C |) ) |
34 |
|
psssstr |
|- ( ( (/) C. ( ( { 1o } X. tag B ) \ ( ( { (/) } X. tag A ) u. ( { (/) } X. tag C ) ) ) /\ ( ( { 1o } X. tag B ) \ ( ( { (/) } X. tag A ) u. ( { (/) } X. tag C ) ) ) C_ ( (| A ,, B |) \ (| C |) ) ) -> (/) C. ( (| A ,, B |) \ (| C |) ) ) |
35 |
17 33 34
|
mp2an |
|- (/) C. ( (| A ,, B |) \ (| C |) ) |
36 |
|
0pss |
|- ( (/) C. ( (| A ,, B |) \ (| C |) ) <-> ( (| A ,, B |) \ (| C |) ) =/= (/) ) |
37 |
35 36
|
mpbi |
|- ( (| A ,, B |) \ (| C |) ) =/= (/) |
38 |
|
difn0 |
|- ( ( (| A ,, B |) \ (| C |) ) =/= (/) -> (| A ,, B |) =/= (| C |) ) |
39 |
37 38
|
ax-mp |
|- (| A ,, B |) =/= (| C |) |