Metamath Proof Explorer


Theorem uneq1i

Description: Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993)

Ref Expression
Hypothesis uneq1i.1
|- A = B
Assertion uneq1i
|- ( A u. C ) = ( B u. C )

Proof

Step Hyp Ref Expression
1 uneq1i.1
 |-  A = B
2 uneq1
 |-  ( A = B -> ( A u. C ) = ( B u. C ) )
3 1 2 ax-mp
 |-  ( A u. C ) = ( B u. C )