Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Tuples of classes
bj-2upln0
Next ⟩
bj-2upln1upl
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-2upln0
Description:
A couple is nonempty.
(Contributed by
BJ
, 21-Apr-2019)
Ref
Expression
Assertion
bj-2upln0
⊢
A
B
≠
∅
Proof
Step
Hyp
Ref
Expression
1
df-bj-2upl
⊢
A
B
=
A
∪
1
𝑜
×
tag
B
2
bj-1upln0
⊢
A
≠
∅
3
0pss
⊢
∅
⊂
A
↔
A
≠
∅
4
2
3
mpbir
⊢
∅
⊂
A
5
ssun1
⊢
A
⊆
A
∪
1
𝑜
×
tag
B
6
psssstr
⊢
∅
⊂
A
∧
A
⊆
A
∪
1
𝑜
×
tag
B
→
∅
⊂
A
∪
1
𝑜
×
tag
B
7
4
5
6
mp2an
⊢
∅
⊂
A
∪
1
𝑜
×
tag
B
8
0pss
⊢
∅
⊂
A
∪
1
𝑜
×
tag
B
↔
A
∪
1
𝑜
×
tag
B
≠
∅
9
7
8
mpbi
⊢
A
∪
1
𝑜
×
tag
B
≠
∅
10
1
9
eqnetri
⊢
A
B
≠
∅