Metamath Proof Explorer


Theorem bj-1uplex

Description: A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-1uplex
|- ( (| A |) e. _V <-> A e. _V )

Proof

Step Hyp Ref Expression
1 bj-pr11val
 |-  pr1 (| A |) = A
2 bj-pr1ex
 |-  ( (| A |) e. _V -> pr1 (| A |) e. _V )
3 1 2 eqeltrrid
 |-  ( (| A |) e. _V -> A e. _V )
4 df-bj-1upl
 |-  (| A |) = ( { (/) } X. tag A )
5 p0ex
 |-  { (/) } e. _V
6 bj-xtagex
 |-  ( { (/) } e. _V -> ( A e. _V -> ( { (/) } X. tag A ) e. _V ) )
7 5 6 ax-mp
 |-  ( A e. _V -> ( { (/) } X. tag A ) e. _V )
8 4 7 eqeltrid
 |-  ( A e. _V -> (| A |) e. _V )
9 3 8 impbii
 |-  ( (| A |) e. _V <-> A e. _V )