Metamath Proof Explorer


Theorem bj-1uplex

Description: A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-1uplex ( ⦅ 𝐴 ⦆ ∈ V ↔ 𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 bj-pr11val pr1𝐴 ⦆ = 𝐴
2 bj-pr1ex ( ⦅ 𝐴 ⦆ ∈ V → pr1𝐴 ⦆ ∈ V )
3 1 2 eqeltrrid ( ⦅ 𝐴 ⦆ ∈ V → 𝐴 ∈ V )
4 df-bj-1upl 𝐴 ⦆ = ( { ∅ } × tag 𝐴 )
5 p0ex { ∅ } ∈ V
6 bj-xtagex ( { ∅ } ∈ V → ( 𝐴 ∈ V → ( { ∅ } × tag 𝐴 ) ∈ V ) )
7 5 6 ax-mp ( 𝐴 ∈ V → ( { ∅ } × tag 𝐴 ) ∈ V )
8 4 7 eqeltrid ( 𝐴 ∈ V → ⦅ 𝐴 ⦆ ∈ V )
9 3 8 impbii ( ⦅ 𝐴 ⦆ ∈ V ↔ 𝐴 ∈ V )