Metamath Proof Explorer


Theorem bj-pr22val

Description: Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-pr22val
|- pr2 (| A ,, B |) = B

Proof

Step Hyp Ref Expression
1 df-bj-2upl
 |-  (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) )
2 bj-pr2eq
 |-  ( (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) ) -> pr2 (| A ,, B |) = pr2 ( (| A |) u. ( { 1o } X. tag B ) ) )
3 1 2 ax-mp
 |-  pr2 (| A ,, B |) = pr2 ( (| A |) u. ( { 1o } X. tag B ) )
4 bj-pr2un
 |-  pr2 ( (| A |) u. ( { 1o } X. tag B ) ) = ( pr2 (| A |) u. pr2 ( { 1o } X. tag B ) )
5 3 4 eqtri
 |-  pr2 (| A ,, B |) = ( pr2 (| A |) u. pr2 ( { 1o } X. tag B ) )
6 df-bj-1upl
 |-  (| A |) = ( { (/) } X. tag A )
7 bj-pr2eq
 |-  ( (| A |) = ( { (/) } X. tag A ) -> pr2 (| A |) = pr2 ( { (/) } X. tag A ) )
8 6 7 ax-mp
 |-  pr2 (| A |) = pr2 ( { (/) } X. tag A )
9 bj-pr2val
 |-  pr2 ( { (/) } X. tag A ) = if ( (/) = 1o , A , (/) )
10 1n0
 |-  1o =/= (/)
11 10 nesymi
 |-  -. (/) = 1o
12 11 iffalsei
 |-  if ( (/) = 1o , A , (/) ) = (/)
13 8 9 12 3eqtri
 |-  pr2 (| A |) = (/)
14 bj-pr2val
 |-  pr2 ( { 1o } X. tag B ) = if ( 1o = 1o , B , (/) )
15 eqid
 |-  1o = 1o
16 15 iftruei
 |-  if ( 1o = 1o , B , (/) ) = B
17 14 16 eqtri
 |-  pr2 ( { 1o } X. tag B ) = B
18 13 17 uneq12i
 |-  ( pr2 (| A |) u. pr2 ( { 1o } X. tag B ) ) = ( (/) u. B )
19 0un
 |-  ( (/) u. B ) = B
20 5 18 19 3eqtri
 |-  pr2 (| A ,, B |) = B