| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-bj-2upl |  |-  (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) ) | 
						
							| 2 |  | bj-pr2eq |  |-  ( (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) ) -> pr2 (| A ,, B |) = pr2 ( (| A |) u. ( { 1o } X. tag B ) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  pr2 (| A ,, B |) = pr2 ( (| A |) u. ( { 1o } X. tag B ) ) | 
						
							| 4 |  | bj-pr2un |  |-  pr2 ( (| A |) u. ( { 1o } X. tag B ) ) = ( pr2 (| A |) u. pr2 ( { 1o } X. tag B ) ) | 
						
							| 5 | 3 4 | eqtri |  |-  pr2 (| A ,, B |) = ( pr2 (| A |) u. pr2 ( { 1o } X. tag B ) ) | 
						
							| 6 |  | df-bj-1upl |  |-  (| A |) = ( { (/) } X. tag A ) | 
						
							| 7 |  | bj-pr2eq |  |-  ( (| A |) = ( { (/) } X. tag A ) -> pr2 (| A |) = pr2 ( { (/) } X. tag A ) ) | 
						
							| 8 | 6 7 | ax-mp |  |-  pr2 (| A |) = pr2 ( { (/) } X. tag A ) | 
						
							| 9 |  | bj-pr2val |  |-  pr2 ( { (/) } X. tag A ) = if ( (/) = 1o , A , (/) ) | 
						
							| 10 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 11 | 10 | nesymi |  |-  -. (/) = 1o | 
						
							| 12 | 11 | iffalsei |  |-  if ( (/) = 1o , A , (/) ) = (/) | 
						
							| 13 | 8 9 12 | 3eqtri |  |-  pr2 (| A |) = (/) | 
						
							| 14 |  | bj-pr2val |  |-  pr2 ( { 1o } X. tag B ) = if ( 1o = 1o , B , (/) ) | 
						
							| 15 |  | eqid |  |-  1o = 1o | 
						
							| 16 | 15 | iftruei |  |-  if ( 1o = 1o , B , (/) ) = B | 
						
							| 17 | 14 16 | eqtri |  |-  pr2 ( { 1o } X. tag B ) = B | 
						
							| 18 | 13 17 | uneq12i |  |-  ( pr2 (| A |) u. pr2 ( { 1o } X. tag B ) ) = ( (/) u. B ) | 
						
							| 19 |  | 0un |  |-  ( (/) u. B ) = B | 
						
							| 20 | 5 18 19 | 3eqtri |  |-  pr2 (| A ,, B |) = B |