| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-bj-2upl |
|- (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) ) |
| 2 |
|
bj-pr2eq |
|- ( (| A ,, B |) = ( (| A |) u. ( { 1o } X. tag B ) ) -> pr2 (| A ,, B |) = pr2 ( (| A |) u. ( { 1o } X. tag B ) ) ) |
| 3 |
1 2
|
ax-mp |
|- pr2 (| A ,, B |) = pr2 ( (| A |) u. ( { 1o } X. tag B ) ) |
| 4 |
|
bj-pr2un |
|- pr2 ( (| A |) u. ( { 1o } X. tag B ) ) = ( pr2 (| A |) u. pr2 ( { 1o } X. tag B ) ) |
| 5 |
3 4
|
eqtri |
|- pr2 (| A ,, B |) = ( pr2 (| A |) u. pr2 ( { 1o } X. tag B ) ) |
| 6 |
|
df-bj-1upl |
|- (| A |) = ( { (/) } X. tag A ) |
| 7 |
|
bj-pr2eq |
|- ( (| A |) = ( { (/) } X. tag A ) -> pr2 (| A |) = pr2 ( { (/) } X. tag A ) ) |
| 8 |
6 7
|
ax-mp |
|- pr2 (| A |) = pr2 ( { (/) } X. tag A ) |
| 9 |
|
bj-pr2val |
|- pr2 ( { (/) } X. tag A ) = if ( (/) = 1o , A , (/) ) |
| 10 |
|
1n0 |
|- 1o =/= (/) |
| 11 |
10
|
nesymi |
|- -. (/) = 1o |
| 12 |
11
|
iffalsei |
|- if ( (/) = 1o , A , (/) ) = (/) |
| 13 |
8 9 12
|
3eqtri |
|- pr2 (| A |) = (/) |
| 14 |
|
bj-pr2val |
|- pr2 ( { 1o } X. tag B ) = if ( 1o = 1o , B , (/) ) |
| 15 |
|
eqid |
|- 1o = 1o |
| 16 |
15
|
iftruei |
|- if ( 1o = 1o , B , (/) ) = B |
| 17 |
14 16
|
eqtri |
|- pr2 ( { 1o } X. tag B ) = B |
| 18 |
13 17
|
uneq12i |
|- ( pr2 (| A |) u. pr2 ( { 1o } X. tag B ) ) = ( (/) u. B ) |
| 19 |
|
0un |
|- ( (/) u. B ) = B |
| 20 |
5 18 19
|
3eqtri |
|- pr2 (| A ,, B |) = B |