Metamath Proof Explorer


Theorem bj-pr2val

Description: Value of the second projection. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-pr2val
|- pr2 ( { A } X. tag B ) = if ( A = 1o , B , (/) )

Proof

Step Hyp Ref Expression
1 df-bj-pr2
 |-  pr2 ( { A } X. tag B ) = ( 1o Proj ( { A } X. tag B ) )
2 1oex
 |-  1o e. _V
3 bj-projval
 |-  ( 1o e. _V -> ( 1o Proj ( { A } X. tag B ) ) = if ( A = 1o , B , (/) ) )
4 2 3 ax-mp
 |-  ( 1o Proj ( { A } X. tag B ) ) = if ( A = 1o , B , (/) )
5 1 4 eqtri
 |-  pr2 ( { A } X. tag B ) = if ( A = 1o , B , (/) )