Metamath Proof Explorer


Theorem bj-2uplex

Description: A couple is a set if and only if its coordinates are sets. For the advantages offered by the reverse closure property, see the section head comment. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-2uplex ( ⦅ 𝐴 , 𝐵 ⦆ ∈ V ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )

Proof

Step Hyp Ref Expression
1 bj-pr21val pr1𝐴 , 𝐵 ⦆ = 𝐴
2 bj-pr1ex ( ⦅ 𝐴 , 𝐵 ⦆ ∈ V → pr1𝐴 , 𝐵 ⦆ ∈ V )
3 1 2 eqeltrrid ( ⦅ 𝐴 , 𝐵 ⦆ ∈ V → 𝐴 ∈ V )
4 bj-pr22val pr2𝐴 , 𝐵 ⦆ = 𝐵
5 bj-pr2ex ( ⦅ 𝐴 , 𝐵 ⦆ ∈ V → pr2𝐴 , 𝐵 ⦆ ∈ V )
6 4 5 eqeltrrid ( ⦅ 𝐴 , 𝐵 ⦆ ∈ V → 𝐵 ∈ V )
7 3 6 jca ( ⦅ 𝐴 , 𝐵 ⦆ ∈ V → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
8 df-bj-2upl 𝐴 , 𝐵 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) )
9 bj-1uplex ( ⦅ 𝐴 ⦆ ∈ V ↔ 𝐴 ∈ V )
10 9 biimpri ( 𝐴 ∈ V → ⦅ 𝐴 ⦆ ∈ V )
11 snex { 1o } ∈ V
12 bj-xtagex ( { 1o } ∈ V → ( 𝐵 ∈ V → ( { 1o } × tag 𝐵 ) ∈ V ) )
13 11 12 ax-mp ( 𝐵 ∈ V → ( { 1o } × tag 𝐵 ) ∈ V )
14 unexg ( ( ⦅ 𝐴 ⦆ ∈ V ∧ ( { 1o } × tag 𝐵 ) ∈ V ) → ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) ∈ V )
15 10 13 14 syl2an ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) ∈ V )
16 8 15 eqeltrid ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ⦅ 𝐴 , 𝐵 ⦆ ∈ V )
17 7 16 impbii ( ⦅ 𝐴 , 𝐵 ⦆ ∈ V ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )