| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-pr21val | ⊢ pr1  ⦅ 𝐴 ,  𝐵 ⦆  =  𝐴 | 
						
							| 2 |  | bj-pr1ex | ⊢ ( ⦅ 𝐴 ,  𝐵 ⦆  ∈  V  →  pr1  ⦅ 𝐴 ,  𝐵 ⦆  ∈  V ) | 
						
							| 3 | 1 2 | eqeltrrid | ⊢ ( ⦅ 𝐴 ,  𝐵 ⦆  ∈  V  →  𝐴  ∈  V ) | 
						
							| 4 |  | bj-pr22val | ⊢ pr2  ⦅ 𝐴 ,  𝐵 ⦆  =  𝐵 | 
						
							| 5 |  | bj-pr2ex | ⊢ ( ⦅ 𝐴 ,  𝐵 ⦆  ∈  V  →  pr2  ⦅ 𝐴 ,  𝐵 ⦆  ∈  V ) | 
						
							| 6 | 4 5 | eqeltrrid | ⊢ ( ⦅ 𝐴 ,  𝐵 ⦆  ∈  V  →  𝐵  ∈  V ) | 
						
							| 7 | 3 6 | jca | ⊢ ( ⦅ 𝐴 ,  𝐵 ⦆  ∈  V  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 8 |  | df-bj-2upl | ⊢ ⦅ 𝐴 ,  𝐵 ⦆  =  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐵 ) ) | 
						
							| 9 |  | bj-1uplex | ⊢ ( ⦅ 𝐴 ⦆  ∈  V  ↔  𝐴  ∈  V ) | 
						
							| 10 | 9 | biimpri | ⊢ ( 𝐴  ∈  V  →  ⦅ 𝐴 ⦆  ∈  V ) | 
						
							| 11 |  | snex | ⊢ { 1o }  ∈  V | 
						
							| 12 |  | bj-xtagex | ⊢ ( { 1o }  ∈  V  →  ( 𝐵  ∈  V  →  ( { 1o }  ×  tag  𝐵 )  ∈  V ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ( 𝐵  ∈  V  →  ( { 1o }  ×  tag  𝐵 )  ∈  V ) | 
						
							| 14 |  | unexg | ⊢ ( ( ⦅ 𝐴 ⦆  ∈  V  ∧  ( { 1o }  ×  tag  𝐵 )  ∈  V )  →  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐵 ) )  ∈  V ) | 
						
							| 15 | 10 13 14 | syl2an | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( ⦅ 𝐴 ⦆  ∪  ( { 1o }  ×  tag  𝐵 ) )  ∈  V ) | 
						
							| 16 | 8 15 | eqeltrid | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ⦅ 𝐴 ,  𝐵 ⦆  ∈  V ) | 
						
							| 17 | 7 16 | impbii | ⊢ ( ⦅ 𝐴 ,  𝐵 ⦆  ∈  V  ↔  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) |