Step |
Hyp |
Ref |
Expression |
1 |
|
bj-pr21val |
⊢ pr1 ⦅ 𝐴 , 𝐵 ⦆ = 𝐴 |
2 |
|
bj-pr1ex |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ ∈ V → pr1 ⦅ 𝐴 , 𝐵 ⦆ ∈ V ) |
3 |
1 2
|
eqeltrrid |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ ∈ V → 𝐴 ∈ V ) |
4 |
|
bj-pr22val |
⊢ pr2 ⦅ 𝐴 , 𝐵 ⦆ = 𝐵 |
5 |
|
bj-pr2ex |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ ∈ V → pr2 ⦅ 𝐴 , 𝐵 ⦆ ∈ V ) |
6 |
4 5
|
eqeltrrid |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ ∈ V → 𝐵 ∈ V ) |
7 |
3 6
|
jca |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ ∈ V → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
8 |
|
df-bj-2upl |
⊢ ⦅ 𝐴 , 𝐵 ⦆ = ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) |
9 |
|
bj-1uplex |
⊢ ( ⦅ 𝐴 ⦆ ∈ V ↔ 𝐴 ∈ V ) |
10 |
9
|
biimpri |
⊢ ( 𝐴 ∈ V → ⦅ 𝐴 ⦆ ∈ V ) |
11 |
|
snex |
⊢ { 1o } ∈ V |
12 |
|
bj-xtagex |
⊢ ( { 1o } ∈ V → ( 𝐵 ∈ V → ( { 1o } × tag 𝐵 ) ∈ V ) ) |
13 |
11 12
|
ax-mp |
⊢ ( 𝐵 ∈ V → ( { 1o } × tag 𝐵 ) ∈ V ) |
14 |
|
unexg |
⊢ ( ( ⦅ 𝐴 ⦆ ∈ V ∧ ( { 1o } × tag 𝐵 ) ∈ V ) → ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) ∈ V ) |
15 |
10 13 14
|
syl2an |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ⦅ 𝐴 ⦆ ∪ ( { 1o } × tag 𝐵 ) ) ∈ V ) |
16 |
8 15
|
eqeltrid |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ⦅ 𝐴 , 𝐵 ⦆ ∈ V ) |
17 |
7 16
|
impbii |
⊢ ( ⦅ 𝐴 , 𝐵 ⦆ ∈ V ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |