Metamath Proof Explorer


Theorem bj-projex

Description: Sethood of the class projection. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-projex
|- ( B e. V -> ( A Proj B ) e. _V )

Proof

Step Hyp Ref Expression
1 df-bj-proj
 |-  ( A Proj B ) = { x | { x } e. ( B " { A } ) }
2 bj-clex
 |-  ( B e. V -> { x | { x } e. ( B " { A } ) } e. _V )
3 1 2 eqeltrid
 |-  ( B e. V -> ( A Proj B ) e. _V )