Metamath Proof Explorer


Theorem bj-ru

Description: Remove dependency on ax-13 (and df-v ) from Russell's paradox ru expressed with primitive symbols and with a class variable V . Note the more economical use of elissetv instead of isset to avoid use of df-v . (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ru
|- -. { x | -. x e. x } e. V

Proof

Step Hyp Ref Expression
1 bj-ru1
 |-  -. E. y y = { x | -. x e. x }
2 elissetv
 |-  ( { x | -. x e. x } e. V -> E. y y = { x | -. x e. x } )
3 1 2 mto
 |-  -. { x | -. x e. x } e. V