Metamath Proof Explorer


Theorem bj-ru1

Description: A version of Russell's paradox ru not mentioning the universal class. (see also bj-ru ). (Contributed by BJ, 12-Oct-2019) Remove usage of ax-10 , ax-11 , ax-12 by using eqabbw following BTernaryTau's similar revision of ru . (Revised by BJ, 28-Jun-2025) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ru1
|- -. E. y y = { x | -. x e. x }

Proof

Step Hyp Ref Expression
1 ru0
 |-  -. A. z ( z e. y <-> -. z e. z )
2 id
 |-  ( x = z -> x = z )
3 2 2 eleq12d
 |-  ( x = z -> ( x e. x <-> z e. z ) )
4 3 notbid
 |-  ( x = z -> ( -. x e. x <-> -. z e. z ) )
5 4 eqabbw
 |-  ( y = { x | -. x e. x } <-> A. z ( z e. y <-> -. z e. z ) )
6 1 5 mtbir
 |-  -. y = { x | -. x e. x }
7 6 nex
 |-  -. E. y y = { x | -. x e. x }