Metamath Proof Explorer
Description: A version of Russell's paradox ru (see also bj-ru ). (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
bj-ru1 |
⊢ ¬ ∃ 𝑦 𝑦 = { 𝑥 ∣ ¬ 𝑥 ∈ 𝑥 } |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bj-ru0 |
⊢ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥 ) |
2 |
|
abeq2 |
⊢ ( 𝑦 = { 𝑥 ∣ ¬ 𝑥 ∈ 𝑥 } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥 ) ) |
3 |
1 2
|
mtbir |
⊢ ¬ 𝑦 = { 𝑥 ∣ ¬ 𝑥 ∈ 𝑥 } |
4 |
3
|
nex |
⊢ ¬ ∃ 𝑦 𝑦 = { 𝑥 ∣ ¬ 𝑥 ∈ 𝑥 } |