Metamath Proof Explorer


Theorem bj-ru1

Description: A version of Russell's paradox ru (see also bj-ru ). (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ru1 ¬ ∃ 𝑦 𝑦 = { 𝑥 ∣ ¬ 𝑥𝑥 }

Proof

Step Hyp Ref Expression
1 bj-ru0 ¬ ∀ 𝑥 ( 𝑥𝑦 ↔ ¬ 𝑥𝑥 )
2 abeq2 ( 𝑦 = { 𝑥 ∣ ¬ 𝑥𝑥 } ↔ ∀ 𝑥 ( 𝑥𝑦 ↔ ¬ 𝑥𝑥 ) )
3 1 2 mtbir ¬ 𝑦 = { 𝑥 ∣ ¬ 𝑥𝑥 }
4 3 nex ¬ ∃ 𝑦 𝑦 = { 𝑥 ∣ ¬ 𝑥𝑥 }