Metamath Proof Explorer


Theorem bj-ru0

Description: The FOL part of Russell's paradox ru (see also bj-ru1 , bj-ru ). Use of elequ1 , bj-elequ12 (instead of eleq1 , eleq12d as in ru ) permits to remove dependency on ax-10 , ax-11 , ax-12 , ax-ext , df-sb , df-clab , df-cleq , df-clel . (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ru0
|- -. A. x ( x e. y <-> -. x e. x )

Proof

Step Hyp Ref Expression
1 pm5.19
 |-  -. ( y e. y <-> -. y e. y )
2 elequ1
 |-  ( x = y -> ( x e. y <-> y e. y ) )
3 bj-elequ12
 |-  ( ( x = y /\ x = y ) -> ( x e. x <-> y e. y ) )
4 3 anidms
 |-  ( x = y -> ( x e. x <-> y e. y ) )
5 4 notbid
 |-  ( x = y -> ( -. x e. x <-> -. y e. y ) )
6 2 5 bibi12d
 |-  ( x = y -> ( ( x e. y <-> -. x e. x ) <-> ( y e. y <-> -. y e. y ) ) )
7 6 spvv
 |-  ( A. x ( x e. y <-> -. x e. x ) -> ( y e. y <-> -. y e. y ) )
8 1 7 mto
 |-  -. A. x ( x e. y <-> -. x e. x )